Skip to main content
Log in

Voltammetric Properties of Nickel Hexacyanoferrate (III) Obtained on the Titanium (IV) Silsesquioxane Occluded into the H-FAU Zeolite for Detection of Sulfite

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A composite prepared from titanium (IV) silsesquioxane and phosphoric acid (TTiP) was prepared and occluded into the H-FAU zeolite (ZTTiP). The material was chemically modified with nickel and subsequently by potassium hexacyanoferrate (III) (ZTTiPNiH). It was preliminarily characterized by infrared spectroscopy (IR), energy dispersive X-ray spectroscopy (EDS) and cyclic voltammetry (CV). The voltammetric behavior of ZTTipNiH was obtained employing a modified graphite paste electrode (GPE) showing one well-defined redox couple with a formal potential of E\(^{{\theta ^{\prime }}}=\) 0.51V (vs Ag/AgCl(sat)), KCl (3M) (20% w/w; v = 20 mV s− 1; KCl; 1.00 mol L− 1) corresponding to the NiIIFeII(CN)6/NiIIFeIII(CN)6 redox process. After rigorous voltammetric studies, the GPE modified with ZTTiPNiH was applied for facile and rapid detection of sulfite. From the analytical curve, a linear response was obtained in a concentration range of 0.05 to 0.80 mmol L− 1 and a detection limit (3σ) of 0.05 mmol L− 1 with a relative standard deviation of 4.21% (n = 3) and an amperometric sensitivity of 14.42 mA L mol− 1 for sulfite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown JF, Vogt LH, Prescott PI (1964) Preparation and characterization of the lower equilibrated phenylsilsesquioxanes. J Am Chem Soc 86(6):1120–1125. https://doi.org/10.1021/ja01060a033

    Article  CAS  Google Scholar 

  2. Brown JF, Vogt LH (1965) The polycondensation of cyclohexylsilanetriol. J Am Chem Soc 87(19):4313–4317. https://doi.org/10.1021/ja00947a016

    Article  CAS  Google Scholar 

  3. Voronkov MG, Lavrent’yev VL (1982) Polyhedral oligosilses- quioxanes and their homo derivatives. Top Curr Chem 102:199–236. https://doi.org/10.1007/3-540-11345-2_12

    Article  CAS  Google Scholar 

  4. Abbenhuis HCL (2000) Advances in homogeneous and heterogeneous catalysis with metal-containing silsesquioxanes. Chem Eur J 6 (1):25–32. https://doi.org/10.1002/(SICI)1521-3765(20000103)6:1<25::AID-CHEM25>3.0.CO;2-Y

  5. Feher FJ, Budzichowski TA (1995) Silsesquioxanes as ligands in inorganic and organometallic chemistry. Polyhedron: Polyhedron 14(22):3239–3253. https://doi.org/10.1016/0277-5387(95)85009-0

    Article  CAS  Google Scholar 

  6. Harrison PG (1997) Silicate cages: precursors to new materials. J Organomet Chem 542(2):141–183. https://doi.org/10.1016/S0022-328X(96)06821-0

    Article  CAS  Google Scholar 

  7. Feher FJ, Tajima TL (1994) Synthesis of a molybdenum-containing silsesquioxane which rapidly catalyzes the metathesis of olefins. J Am Chem Soc 116(5):2145–2146. https://doi.org/10.1021/ja00084a065

    Article  CAS  Google Scholar 

  8. Hermann WA, Anwander R, Dufaud V, Scherer W (1994) Molekulare Siloxankomplexe der Seltenerdmetalle – Modellsysteme für silicatgeträgerte Katalysatoren? Angew Chem 106(12):1338–1340. https://doi.org/10.1002/ange.19941061221

    Article  Google Scholar 

  9. Hermann WA, Anwander R, Dufaud V, Scherer W (1994) Molecular siloxane complexes of rare earth metals—model systems for silicate-supported catalysts? Angew Chem Int Ed Engl 33(12):1285–1286. https://doi.org/10.1002/anie.199412851

    Article  Google Scholar 

  10. Liu J-C, Wilson SR, Shapley JR, Feher FJ (1990) A triosmium cluster-siloxane cage complex. Synthesis and structure of HOs3(CO)10[(.mu.-O)Si7O10(C6H11)7]. Inorg Chem 29(26):5138–5139. https://doi.org/10.1021/ic00351a002

    Article  CAS  Google Scholar 

  11. Buys IE, Hambley TW, Houlton DJ, Maschmeyer T, Masters AF, Smith AK (1994) Models of surface-confined metallocene derivatives. J Mol Catal 86(1–3):309–318. https://doi.org/10.1016/0304-5102(93)E0177-I

    Article  CAS  Google Scholar 

  12. Jefferson L-CU, Netchaev AD, Jefcoat JA, Windham AD, McFarland FM, Guo S, Buchanan RK, Buchanan JP (2015) Preparation and characterization of polyhedral oligomeric silsesquioxane-containing, Titania-Thiol-Ene composite photocatalytic coatings, emphasizing the hydrophobic–hydrophilic transition. ACS Appl Mater Interfaces 7(23):12639–12648. https://doi.org/10.1021/acsami.5b01488

    Article  CAS  Google Scholar 

  13. Bai H, Zheng Y, Li P, Zhang A (2015) Synthesis of liquid-like trisilanol isobutyl-POSS NOHM and its application in capturing CO2. Chem Res Chin Univ 31(3):484–488. https://doi.org/10.1007/s40242-015-4443-5

    Article  CAS  Google Scholar 

  14. Perše LS, Mihelčič M, Orel B (2015) Rheological and optical properties of solar absorbing paints with POSS-treated pigments. Mater Chem and Phys 149–150:368–377. https://doi.org/10.1016/j.matchemphys.2014.10.031

    Article  Google Scholar 

  15. Haddad TS, Viers BD, Phillips SH (2001) Polyhedral oligomeric silsesquioxane (POSS)-styrene macromers. J Inorg Organomet Polym Mater 11(3):155–164. https://doi.org/10.1023/A:1015237627340

    Article  CAS  Google Scholar 

  16. Mehta AM, Tembe GL, Parikh PA, Mehta GN (2011) Catalytic ethylene polymerization by the titanium-polyhedral oligomeric silsesquioxane-Et3Al2Cl3 system. Reac Kinet Mech Cat 104(2):369–375. https://doi.org/10.1007/s11144-011-0356-6

    Article  CAS  Google Scholar 

  17. do Carmo DR, Dias Filho NL, Stradiotto NR (2007) Encapsulation of titanium (IV) silsesquioxane into the NH4USY zeolite: prepa- ration, characterization and application. Mater Res Bull 42 (10):1811–1822. https://doi.org/10.1016/j.materresbull.2006.12.001

    Article  Google Scholar 

  18. Collman JP, Marroco M, Denisevich P, Koval C, Anson FC (1979) Potent catalysis of the electroreduction of oxygen to water by dicobalt porphyrin dimers adsorbed on graphite electrodes. J Electroanal Chem Interfacial Electrochem 101(1):117–122. https://doi.org/10.1016/S0022-0728(79)80085-6

    Article  CAS  Google Scholar 

  19. Isaac A, Davis J, Livingstone C, Wain AJ, Compton RG (2006) Electroanalytical methods for the determination of sulfite in food and beverages. Trends Anal Chem 25(6):589–598. https://doi.org/10.1016/j.trac.2006.04.001

    Article  CAS  Google Scholar 

  20. Schwartz H (1983) Sensitivity to ingested metabisulfite: variations in clinical presentation. J Allergy Clin Inmunol 71(5):487–489. https://doi.org/10.1016/0091-6749(83)90466-9

    Article  CAS  Google Scholar 

  21. Araújo AN, Couto CMCM, Lima JLFC, Montenegro MCBSM (1998) Determination of SO2 in wines using a flow injection analysis system with potentiometric detection. J Agric Food Chem 46(1):168–172. https://doi.org/10.1021/jf970354i

    Article  Google Scholar 

  22. Azevedo CMN, Araki K, Toma HE, Angnes L (1999) Determination of sulfur dioxide in wines by gas-diffusion flow injection analysis utilizing modified electrodes with electrostatically assembled films of tetraruthenated porphyrin. Anal Chim Acta 387(2):175–180. https://doi.org/10.1016/S0003-2670(99)00060-4

    Article  CAS  Google Scholar 

  23. William S (1984) Official methods of the AOAC, 14th edn. Association of Official Analytical Chemists Inc, Arlington

    Google Scholar 

  24. Nour El-Dein FA, Zayed MA, Khalifa H (1989) Some observations on the microdetermination of sulfite, sulfide, and thiosulfate by mercurimetric titration. Microchem J 39(1):126–132. https://doi.org/10.1016/0026-265X(89)90018-0

    Article  Google Scholar 

  25. Li Y, Zhao M (2006) Simple methods for rapid determination of sulfite in food products. Food Control 17 (12):975–980. https://doi.org/10.1016/j.foodcont.2005.07.008

    Article  CAS  Google Scholar 

  26. Zare-Dorabei R, Boroun S, Noroozifar M (2018) Flow injection analysis–flame atomic absorption spectrometry system for indirect determination of sulfite after on-line reduction of solid-phase manganese (IV) dioxide reactor. Talanta 178:722–727. https://doi.org/10.1016/j.talanta.2017.10.012

    Article  CAS  Google Scholar 

  27. Perfetti GA, Diachenko GW (2003) Determination of sulfite in dried garlic by reversed phase ion-pairing liquid chromatography with post-column detection. J AOAC Int 86(3):544–550

    CAS  PubMed  Google Scholar 

  28. Kim HJ, Kim YK (1986) Analysis of free and total sulfites in food by ion chromatography with electrochemical detection. J Food Sci 51(5):1360–1361. https://doi.org/10.1111/j.1365-2621.1986.tb13122.x

    Article  CAS  Google Scholar 

  29. Theisen S, Hänsch R, Kothe L, Leist U, Galensa R (2010) A fast and sensitive HPLC method for sulfite analysis in food based on a plant sulfite oxidase biosensor. Biosens Bioelectron 26(1):175–181. https://doi.org/10.1016/j.bios.2010.06.009

    Article  CAS  Google Scholar 

  30. Preecharueangrit S, Thavarungkul P, Kanatharana P, Numnuam A (2018) Amperometric sensing of sulfite using a gold electrode coated with ordered mesoporous carbon modified with nickel hexacyanoferrate. J Electroanal Chem 808:150–159. https://doi.org/10.1016/j.jelechem.2017.11.070

    Article  CAS  Google Scholar 

  31. García T, Casero E, Lorenzo E, Pariente F (2005) Electrochemical sensor for sulfite determination based on iron hexacyanoferrate film modified electrodes. Sens Actuators B Chem 106(2):803–809. https://doi.org/10.1016/j.snb.2004.09.033

    Article  Google Scholar 

  32. Cumba LR, Bicalho UO, Carmo DR (2012) Voltammetric studies of cobalt hexacyanoferrate formed on the titanium (IV) phosphate surface and its application to the determination of sulfite. Int J of Electrochem Sci 7 (3):2123–2135

    CAS  Google Scholar 

  33. Jerman I, Koželj M, Orel B (2010) The effect of polyhedral oligomeric silsesquioxane dispersant and low surface energy additives on spectrally selective paint coatings with self-cleaning properties. Sol Energy Mater Sol Cells 94(2):232–245. https://doi.org/10.1016/j.solmat.2009.09.008

    Article  CAS  Google Scholar 

  34. Fang B, Feng Y, Wang G, Zhang C, Gu A, Liu M (2011) A uric acid sensor based on electrodeposition of nickel hexacyanoferrate nanoparticles on an electrode modified with multi-walled carbon nanotubes. Mikrochim Acta 173(1-2):27–32. https://doi.org/10.1007/s00604-010-0509-8

    Article  CAS  Google Scholar 

  35. Mostafa M, El-Absy M A, Amin M, El-Amir MA, Farag AB (2010) Partial purification of neutron-activation 99Mo from cross-contaminant radionuclides onto potassium nickel hexacyanoferrate(II) column. J Radioanal Nucl Chem 285(3):579–588. https://doi.org/10.1007/s10967-010-0584-7

    Article  CAS  Google Scholar 

  36. Bagkar N, Betty CA, Hassan PA, Kahali K, Bellare JR, Yakhmi JV (2006) Self-assembled films of nickel hexacyanoferrate: Electrochemical properties and application in potassium ion sensing. Thin Solid Films 497(1–2):259–266. https://doi.org/10.1016/j.tsf.2005.11.002

    Article  CAS  Google Scholar 

  37. Deng K, Li C, Qiu X, Zhou J, Hou Z (2015) Electrochemical preparation, characterization and application of electrodes modified with nickel–cobalt hexacyanoferrate/graphene oxide–carbon nanotubes. J Electroanal Chem 755:197–202. https://doi.org/10.1016/j.jelechem.2015.08.003

    Article  CAS  Google Scholar 

  38. Makowski O, Kowalewska B, Szymanska D, Stroka J, Miecznikowski K, Palys B, Malik MA, Kulesza PJ (2007) Controlled fabrication of multilayered 4-(pyrrole-1-yl) benzoate supported poly(3,4-ethylenedioxythiophene) linked hybrid films of Prussian blue-type nickel hexacyanoferrate. Electrochim Acta 53(3):1235–1243. https://doi.org/10.1016/j.electacta.2007.02.083

    Article  CAS  Google Scholar 

  39. Engel D, Grabner EW (1985) Copper hexacyanoferrate-modified glassy carbon: a novel type of potassium-selective electrode. Ber Bunsenges Phys Chem 89(9):982–986. https://doi.org/10.1002/bbpc.19850890911

    Article  CAS  Google Scholar 

  40. Jayasri D, Narayanan SS (2006) Electrocatalytic oxidation and amperometric determination of BHA at graphite–wax composite electrode with silver hexacyanoferrate as an electrocatalyst. Sens Actuators B Chem 119 (1):135–142. https://doi.org/10.1016/j.snb.2005.11.064

    Article  CAS  Google Scholar 

  41. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  42. do Carmo DR, Silva RMD, Stradiotto NR (2002) Estudo eletroquímico de Fe[Fe(CN)5NO] em eletrodo de pasta de grafite. Eclet Quim 27:197–210. https://doi.org/10.1590/S0100-46702002000200017

    Article  Google Scholar 

  43. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem 101(1):19–28. https://doi.org/10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  44. Babu RS, Prabhu P, Narayanan SS (2011) Selective electrooxidation of uric acid in presence of ascorbic acid at a room temperature ionic liquid/nickel hexacyanoferrate nanoparticles composite electrode. Colloids Surf B Biointerfaces 88(2):755–763. https://doi.org/10.1016/j.colsurfb.2011.08.011

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to express their gratitude for the financial support by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP- Proc. 2012/05438-1 and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devaney Ribeiro do Carmo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Carmo, D.R., Maraldi, V.A. & Cumba, L.R. Voltammetric Properties of Nickel Hexacyanoferrate (III) Obtained on the Titanium (IV) Silsesquioxane Occluded into the H-FAU Zeolite for Detection of Sulfite. Silicon 11, 267–276 (2019). https://doi.org/10.1007/s12633-018-9918-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9918-9

Keywords

Navigation