Skip to main content
Log in

Effect of a Metamaterial and Silicon Layers on Performance of Surface Plasmon Resonance Biosensor in Infrared Range

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Metamaterial based surface plasmon resonance biosensor for enhancement of performance parameters at near infrared wavelengths is presented. The thickness of the metamaterial layer and gold layer were optimized at near infrared wavelengths. The performance parameters of the SPR sensor are defined in terms of sensitivity, detection accuracy and quality factor. By the addition of a metamaterial layer the sensitivity is enhanced but the quality factor and detection accuracy is slightly decreased. Hence, further to increase the quality factor and detection accuracy a silicon layer is included between the gold and metamaterial layers. It was observed that the full width at half maximum (FWHM) of reflectance curve is minimized up to great extent with little decrement in the sensitivity due to the inclusion of the silicon layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamola J, Yee SS, Gauglitzand G (1999) Surface Plasmon Resonance sensor: Review. Analy Sens Actuator B Chem 54:3–15

    Article  Google Scholar 

  2. Zudong F, White IM, Shopova SI, Zhu H, Suter ZD, Sun Y (2008) Sensitive Optical Bio-sensors for Unlabeled Targets- A Review. Analyticachimicacta 620:8–26

    Google Scholar 

  3. Yonjon CR, Haynes CL, Jhang X, Walsh JT, Van Duyne RP (2004) A Glucose Bio-sensor based on Raman Scattering: improved Partition layer, Temporal Stability, Reversibility and Resistance to Serum Protein Interference. Anal Chem 76:78–85

    Article  CAS  Google Scholar 

  4. Ligler FS, Taitt CR, Shiver-Lake LC, Sapsford KE, Shubin Y, Golden JP (2003) Array Bio-sensors for Detection of Toxins. Anal Bioanal Chem 377:469–477

    Article  CAS  PubMed  Google Scholar 

  5. Roh S, Chung T, Lee B (2011) Overview of the characteristics of micro and nano structured surface Plasmon sensor. Sensors 11:1565–1588

    Article  PubMed  Google Scholar 

  6. Kretschmann E, Raether H (1968) Radiative Decay of non radiative surface plasmons excited by light. Z Naturforsch 23A:2135–2136

    Google Scholar 

  7. Homola J (1997) On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sensors Actuators B Chem 41(1–3):207–211

    Article  CAS  Google Scholar 

  8. Hamola J (2003) Present and future of Surface Plasmon Resonance Biosensor. Analytical and Bio-analytical chemistry 377:528–539

    Article  CAS  Google Scholar 

  9. Ong BH, Yuan X, Tijn SC, Zhang J, Ng HM (2006) Optimized layer thickness for maximum evanescent field enhancement of a bimetallic layer surface plasmon resonance biosensor. Sens Actuator B Chem 114:1028–1034

    Article  CAS  Google Scholar 

  10. Raether H (1988) Surface Plasmons on smooth and rough surfaces and on gratings. Springer-Verlag, Berlin

    Book  Google Scholar 

  11. Chen T, Li S, Sun H (2012) Metamaterials Applications in Sensing. Sensors 12:2742–2765

    Article  PubMed  Google Scholar 

  12. Prajapati Y, Yadav A, Verma A, singh V, Saini JP (2013) Effect of Metamaterial layer on optical surface plasmon resonance Sensor. International Journal for Light and Electron Optics 124:3607–3610

    Article  CAS  Google Scholar 

  13. Upadhyay A, Prajapati YK, Singh V, Saini JP (2015) Comprehensive study of reverse index waveguide based sensor with metamaterial core. Opt Commun 348:71–76

    Article  CAS  Google Scholar 

  14. ZoranJaksic (2010). In: Tremblay EJ (ed) Optical metamaterials as the platform for a novel generation of ultrasensitive chemical or biological sensors. Nova Science Publishers, New York, pp 1–42. ISBN: 978-1-61668-958-2

  15. Pal S, Prajapati YK, Saini JP, Singh V (2016) Sensitivity 481 enhancement of Metamaterial based Surface Plasmon Resonance Biosensor for near infrared. Optica Applicata 46(1):131–143

    CAS  Google Scholar 

  16. Pal S, Prajapati YK, Saini JP, Singh V (2015) Sensitivity enhancement of metal clad planar waveguide sensor using metamaterial layer as a guiding layer. Inter J Light Electron Opt 126: 1372–1376

    Article  CAS  Google Scholar 

  17. Tao H, Kadlec EA, Strikwerda AC, Fan K, Padilla WJ, Averitt RD, Shaner EA, Zhang X (2011) Opt Express 19:21620–21626

    Article  CAS  PubMed  Google Scholar 

  18. Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou JF, Koschny Th, Soukoulis CM (2005) Magnetic metamaterials at telecommunication and visible frequencies. Phys Rev Lett 95:203901–203904

    Article  CAS  PubMed  Google Scholar 

  19. Monsoriu JA, Depine RA, Martinez-Ricci ML, Silvestre E (2006) Interaction between non-Bragg band gaps in 1D metamaterial photonic crystals. Opt Exp 14:12958–12967

    Article  Google Scholar 

  20. Maier T, Brueckl H (2010) Multispectral microbolometer for the mid infrared. Opt Lett 35:3766–3768

    Article  CAS  PubMed  Google Scholar 

  21. Veselago V (1968) The electrodynamics of substance with simultaneously negative values of e and µ. Sov Phys Usp 10:509–514

    Article  Google Scholar 

  22. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Micro Theory Tech 47:2075–2084

    Article  Google Scholar 

  23. Gong B, Zhao X, Pan Z, Li S, Wang X, Zhao Y, Luo C (2014) A visible metamaterial fabricated by self-assembly method. Sci Rep 4:4713. https://doi.org/10.1038/srep04713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park SJ, Hong JT, Choi SJ, Kim HS, Park WK, Han ST, Park JY, Lee S, Kim DS, Ahn YH (2014) Detection of microorganisms using terahertz metamaterials. Sci Rep 4:4988. https://doi.org/10.1038/srep04988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ishimaru A, Jaruwatanadilok S, Kuga Y (2005) Generalized surface plasmon resonance sensors using metamaterials and negative index materials. Prog Electromagn Res 51:139–152

    Article  Google Scholar 

  26. Ekgasit S, Thammacharoen C, Knoil W (2004) Surface plasmon resonace spectroscopy based on evanescent field treatment. Anal Chim 76:561–568

    Article  CAS  Google Scholar 

  27. Lahav A, Auslender M, Abdulhalim I (2008) Sensitivity enhancement of the guided wave surface-plasmon resonance sensors. Opt Lett 33:2539–2541

    Article  CAS  PubMed  Google Scholar 

  28. Maurya JB, Prajapati YK, Vivek Singh JP (2015) Saini and Rajeev Tripathi, Performance of Graphene-MoS2 based Surface Plasmon Resonance Sensor using Silicon layer. J Opt Quant Electron 47(11):3599–3611. Springer publication

    Article  CAS  Google Scholar 

  29. http://refractiveindex.info/

  30. Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–14400

    Article  CAS  PubMed  Google Scholar 

  31. Born M, Wolf E (1999) Principles of optics, electromagnetic theory of propagation, interference and diffraction of light, 7th edn. Cambridge University Press, Cambridge. ISBN:0 521642221

    Book  Google Scholar 

  32. Nelson BP, Frutos AG, Brockman JM, Corn RM (1999) Nearinfrared surface plasmon resonance measurements of ultrathin layers. 1. Angle shift and SPR imaging experiments. Analytical Chemistry 71:3928–3934

    Article  CAS  Google Scholar 

  33. Pockrand I (1978) Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf Sci 72(3):577–588

    Article  CAS  Google Scholar 

  34. Xu X, Peng B, Li D, Zhang J, Wong LM, Zhang Q, Wang S, Xiong Q (2011) Flexible visible–infrared metamaterials and their applications in highly sensitive chemical and biological sensing. Nano Lett 11(8):3232–3238

    Article  CAS  PubMed  Google Scholar 

  35. Bergmair I, Dastmalchi B, Mergmair M, Saeed A, Hilber W, Hesser G, Helgert C, Pshenay-Severin E, Pertsch T, Kley EB, Hubner U, Shen NH, Penciu R, Kafesaki M, Soukoulis CM, Hingerl K, Muehlberger M, Schoeftner R (2011) Single and multilayer metamaterials fabricated by nanoimprint lithography. Nanotechnology 22:325301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present work is partially supported by the department of science and Technology (DST), New Delhi, India under the fast track young scientist scheme no. SB/ FTP/ ETA -0478/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. K. Prajapati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapati, Y.K., Pal, S. & Saini, J.P. Effect of a Metamaterial and Silicon Layers on Performance of Surface Plasmon Resonance Biosensor in Infrared Range. Silicon 10, 1451–1460 (2018). https://doi.org/10.1007/s12633-017-9625-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-017-9625-y

Keywords

Navigation