Skip to main content

Advertisement

Log in

Fractal Nature of Nanocomposite Thin Films with Co NPs in a-C:H Matrix

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The aim of the present article is to investigate experimentally the fractal nature of the 3-D surface morphology of nanocomposite thin films consisting of partially oxidized cobalt nanoparticles with a face-centered-cubic (fcc) structure embedded in a hydrogenated amorphous carbon matrix. The samples were prepared by reactive magnetron sputtering using acetylene gas under gas pressures varying from 2.1 to 2.9 Pa. The characterization of the films surfaces was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM), and the obtained AFM images were analyzed dividing them into motifs of significant peaks and pits using a segmentation algorithm. This analysis revealed that these nanocomposite thin films are well described as monofractal structures presenting only one scaling exponent whose value was found within the range from 2.4 to 2.7 for the different samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beecroft L L, Ober C K (1997) Nanocomposite materials for optical applications. Chem Mater 9(6):1302–1317

    Article  CAS  Google Scholar 

  2. Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology. Wiley

  3. Folch B, Guari Y, Larionova J, Luna C, Sangregorio C, Innocenti C, Caneschi A, Guérin C (2008) Synthesis and behaviour of size controlled cyano-bridged coordination polymer nanoparticles within hybrid mesoporous silica. New J Chem 32(2):273–282

    Article  CAS  Google Scholar 

  4. Fangfang S, Xiaoqiong L, Qun W, Liqiong L, Chao Z (2015) Nanocomposite hydrogels and their applications in drug delivery and tissue engineering. J Biomed Nanotechnol 11(1):40–52

    Article  Google Scholar 

  5. Ghobadi N, Ganji M, Luna C, Arman A, Ahmadpourian A (2016) Effects of substrate temperature on the properties of sputtered TiN thin films. J Mater Sci Mater Electron 27(3):2800–2808

    Article  CAS  Google Scholar 

  6. Arman A, Ghodselahi T, Molamohammadi M, Solaymani S, Zahrabi H, Ahmadpourian A (2015) Microstructure and optical properties of Cu@ Ni nanoparticles embedded in aC: H. Prot Met Phys Chem Surf 51 (4):575–578

    Article  CAS  Google Scholar 

  7. Molamohammadi M, Luna C, Arman A, Solaymani S, Boochani A, Ahmadpourian A, Shafiekhani A (2015) Preparation and magnetoresistance behavior of nickel nanoparticles embedded in hydrogenated carbon film. J Mater Sci Mater Electron 26(9):6814–6818

    Article  CAS  Google Scholar 

  8. Gope J, Kumar S, Singh S, Rauthan C M S, Srivastava P C (2012) Growth of Mixed-Phase Amorphous and Ultra Nanocrystalline Silicon Thin Films in the Low Pressure Regime by a VHF PECVD Process. Silicon 4:127

    Article  CAS  Google Scholar 

  9. Chau J L, Lin Y M, Li A K, Su W F, Chang K S, Hsu S L, Li T (2007) Transparent high refractive index nanocomposite thin films. Mater Lett 61(14):2908–10

    Article  CAS  Google Scholar 

  10. DeLongchamp D M, Hammond P T (2004) Multiple-color electrochromism from layer-by-layer-assembled polyaniline/PRussian blue nanocomposite thin films. Chem Mater 16(23):4799–4805

    Article  CAS  Google Scholar 

  11. Chen A, Bi Z, Tsai C F, Wang H (2011) Tunable Low-Field Magnetoresistance in (La0. 7Sr0. 3MnO3) 0.5:(ZnO) 0.5 Self-Assembled Vertically Aligned Nanocomposite Thin Films. Adv Funct Mater 21(13):2423–2429

    Article  CAS  Google Scholar 

  12. Ghodselahi T, Arman A (2015) Magnetoresistance of Cu–Ni nanoparticles in hydrogenated amorphous carbon thin films. J Mater Sci Mater Electron 26(6):4193–4197

    Article  CAS  Google Scholar 

  13. Kuo C M, Kuo P C (2000) Magnetic properties and microstructure of FePt-Si3N4 nanocomposite thin films. J Appl Phys 87(1):419–426

    Article  CAS  Google Scholar 

  14. Sirkar K, Revzin A, Pishko M V (2000) Glucose and lactate biosensors based on redox polymer/oxidoreductase nanocomposite thin films. Anal Chem 72(13):2930–2936

    Article  CAS  Google Scholar 

  15. Patil U V, Ramgir N S, Karmakar N, Bhogale A, Debnath A K, Aswal D K, Gupta S K, Kothari D C (2015) Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films. Appl Surf Sci 339:69–74

    Article  CAS  Google Scholar 

  16. Bodaghi H, Mostofi Y, Oromiehie A, Ghanbarzadeh B, Hagh Z G (2015) Synthesis of clay–TiO2 nanocomposite thin films with barrier and photocatalytic properties for food packaging application. J Appl Polym Sci 132(14):41764(1-8)

    Article  Google Scholar 

  17. Pushparaj V L, Shaijumon M M, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt R J, Nalamasu O, Ajayan P M (2007) Flexible energy storage devices based on nanocomposite paper. Proc Nat Acad Sci USA 104(34):13574–13577

    Article  CAS  Google Scholar 

  18. Ding Y F, Chen J S, Lim B C, Hu J F, Liu B, Ju G (2008) Granular L10 FePt: TiO2 (001) nanocomposite thin films with 5nm grains for high density magnetic recording. Appl Phys Lett 93(3):32506–32900

    Article  Google Scholar 

  19. Narayan R J (2005) Nanostructured diamondlike carbon thin films for medical applications. Mater Sci Eng: C 25(3):405–16

    Article  Google Scholar 

  20. Raoufi D, Hosseinpanahi F (2012) Surface morphology dynamics in ITO thin films. J Modern Phys 3 (8):645–651

    Article  Google Scholar 

  21. Gelali A, Ahmadpourian A, Bavadi R, Hantehzadeh M R, Ahmadpourian A (2012) Characterization of Microroughness Parameters in Titanium Nitride Thin Films Grown by DC Magnetron Sputtering. J Fusion Energy 31(6):586–590

    Article  CAS  Google Scholar 

  22. Stach S, Garczyk Z, Ţălu Ş, Solaymani S, Ghaderi A, Moradian R, Nezafat N B, Elahi S M, Gholamali H (2015) Stereometric parameters of the Cu/Fe NPs thin film. J Phys Chem C 119(31):17887–17898

    Article  CAS  Google Scholar 

  23. Ţălu Ş (2015) Micro and nanoscale characterization of three dimensional surfaces. Basics and applications Napoca Star Publishing House, Cluj-Napoca, Romania

    Google Scholar 

  24. Ghobadi N, Ganji M, Luna C, Ahmadpourian A, Arman A (2016) The effects of DC power on the physical properties and surface topography of sputtered TiN nanostructured thin films. Opt Quant Electron 48 (10):467

    Article  Google Scholar 

  25. Gautam V, Patnaik A, Bhat I K (2016) Microstructure and wear behavior of single layer (CrN) and multilayered (SiN/CrN) coatings on particulate filled aluminum alloy composites. Silicon 8:417

    Article  CAS  Google Scholar 

  26. Ţălu Ş, Ghazai A J, Stach S, Hassan A, Hassan Z, Ţălu M (2014) Characterization of surface roughness of Pt Schottky contacts on quaternary n-Al0.08In0.08Ga0.84N thin film assessed by atomic force microscopy and fractal analysis. J Mater Sci Mater Electron 25(1):466–477

    Article  Google Scholar 

  27. Arman A, Ţălu v̧, Luna C, Ahmadpourian A, Naseri M, Molamohammadi M (2015) Micromorphology characterization of copper thin films by AFM and fractal analysis. J Mater Sci Mater Electron 26 (12):9630–9639

    Article  CAS  Google Scholar 

  28. Ţălu Ş, Marković Z, Stach S, Marković B T, Ţălu M (2014) Multifractal characterization of single wall carbon nanotube thin films surface upon exposure to optical parametric oscillator laser irradiation. Appl Surf Sci 289:97–106

    Article  Google Scholar 

  29. Ţălu Ş, Stach S, Mahajan A, Pathak D, Wagner T, Kumar A, Bedi RK, Ta̧ľu M (2014) Multifractal characterization of water soluble copper phthalocyanine based films surfaces. Electron Mater Lett 10(4):719–730

    Article  Google Scholar 

  30. Molamohammadi M, Arman A, Achour A, Astinchap B, Ahmadpourian A, Boochani A, Naderi S, Ahmadpourian A (2015) Microstructure and optical properties of cobalt–carbon nanocomposites prepared by RF-sputtering. J Mater Sci Mater Electron 26:5964–5969

    Article  CAS  Google Scholar 

  31. Dong W P, Sullivan P J, Stout K J (1994) Comprehensive study of parameters for characterizing 3-dimensional surface topography. 4. Parameters for characterizing spatial and hybrid properties. Wear 178:45–60

    Article  CAS  Google Scholar 

  32. Sayles R S, Thomas T R (1977) Spatial representation of surface roughness by means of structure function - practical alternative to correlation. Wear 42:263–276

    Article  Google Scholar 

  33. Thomas A, Thomas T R (1988) Digital analysis of very small scale surface roughness. J Wave Mater Interact 3:341–350

    Google Scholar 

  34. Ţălu Ş, Bramowicz M, Kulesza S, Lainović T, Vilotić M, Blažić L, Kakaš D (2016) Influence of the artificial saliva storage on 3-D surface texture characteristics of contemporary dental nanocomposites. Journal of Microscopy. doi:10.1111/jmi.12432

  35. Kulesza S, Bramowicz M (2014) A comparative study of correlation methods for determination of fractal parameters in surface characterization. Appl Surf Sci 293:196–201

    Article  CAS  Google Scholar 

  36. Ţălu Ş, Bramowicz M, Kulesza S, Ghaderi A, Solaymani S, Kenari MF, Ghoranneviss M (2016) Fractal Features and Surface Micromorphology of Diamond Nano-Crystals. Journal of Microscopy. doi:10.1111/jmi.12422

  37. Ţălu Ş, Bramowicz M, Kulesza S, Shafiekhani A, Ghaderi A, Mashayekhi F, Solaymani S (2015) Microstructure and tribological properties of FeNPs@a-C:H films by micromorphology analysis and fractal geometry. Ind Eng Chem Res 54(33):8212– 8218

    Article  Google Scholar 

  38. Ţălu Ş, Bramowicz M, Kulesza S, Solaymani S, Shafikhani A, Ghaderi A, Ahmadirad M (2016) Gold nanoparticles embedded in carbon film: Micromorphology analysis. J Ind Eng Chem 35:158–166

    Article  Google Scholar 

  39. Ţălu Ş, Luna C, Ahmadpourian A, Achour A, Arman A, Naderi S, Ghobadi N, Stach S, Safibonab B (2016) Micromorphology and fractal analysis of nickel–carbon composite thin films. J Mater Sci Mater Electron. doi:10.1007/s10854-016-5268-9

  40. Ţălu Ş, Solaymani S, Bramowicz M, Naseri N, Kulesza S, Ghaderi A (2016) Surface micromorphology and fractal geometry of Co/CP/X (X=Cu, Ti, SM and Ni) nanoflake electrocatalysts. RSC Adv 6:27228–27234

    Article  Google Scholar 

  41. Ţălu Ş, Solaymani S, Bramowicz M, Kulesza S, Ghaderi A, Shahpouri S, Elahi S M (2016) Effect of electric field direction and substrate roughness on three-dimensional self-assembly growth of copper oxide nanowires. J Mater Sci Mater Electron 27(9):9272–9277

    Article  Google Scholar 

  42. Ţălu Ş, Bramowicz M, Kulesza S, Solaymani S, Ghaderi A, Dejam L, Boochani A, Elahi S M (2016) Microstructure and micromorphology of ZnO thin films: case study on Al doping and annealing effects. Superlattice Microstruct 93:109–121

    Article  Google Scholar 

  43. Bramowicz M, Braic L, Azem F A, Kulesza S, Birlik I, Vladescu A (2016) Mechanical properties and fractal analysis of the surface texture of sputtered hydroxyapatite coatings. Appl Surf Sci 379:338–346

    Article  CAS  Google Scholar 

  44. Vranceanu D M, Cotrut C M, Bramowicz M, Titorencu I, Kulesza S, Kiss A, Berbecaru A, Pruna V, Branzei M, Vladescu A (2016) Osseointegration of sputtered SiC-added hydroxyapatite for orthopaedic applications. Ceram Int 42(8):10085–10093

    Article  CAS  Google Scholar 

  45. Bramowicz M, Kulesza S, Czaja P, Maziarz W (2014) Application of the autocorrelation function and fractal geometry methods for analysis of MFM images. Arch Metall Mater 59:451–457

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azin Ahmadpourian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tǎlu, S., Kulesza, S., Bramowicz, M. et al. Fractal Nature of Nanocomposite Thin Films with Co NPs in a-C:H Matrix. Silicon 10, 675–680 (2018). https://doi.org/10.1007/s12633-016-9512-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9512-y

Keywords

Navigation