Skip to main content
Log in

Integration Between Optical and Structural Behavior of Heavy Metal Oxide Glasses Doped with Multiple Glass Formers

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Heavy metal oxide glasses (composition 60 PbO, 20 Bi2O3 mol%) and containing 20 mol% conventional glass formers SiO2, B2O3, and P2O5 were prepared. Combined optical and Fourier transform infrared absorption spectra were measured for the prepared glasses to justify the role of glass formers in the optical spectra together with the network structural groups in such glasses. Also, the density and molar volume values were calculated to obtain some insight on the compactness and arrangement in the network. Optical measurements have been used to determine the optical band gap (Eg), Urbach energy (ΔE) and the refractive index (n). Optical spectra of all the samples reveal strong UV absorption which is related to the presence of unavoidable trace iron impurities (Fe 3+ ions) contaminated within the raw materials which were used for the preparation of the studied glasses. Additional near visible bands are observed in all prepared glasses due to characteristic absorption of Pb 2+ and Bi 3+ ions. Furthermore, The variations of the luminescence intensity, values of the optical band gap, band tail, and refractive index can be understood and related in terms of the structural changes that take place in the glass samples. The infrared absorption spectra of the prepared glasses show characteristic absorption bands related to the borate or silicate or phosphate network (BO3, BO4, SiO4, PO4 groups) together with vibrational modes due to Bi-O and Pb-O groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sugimito N (2002) J Amer Ceram Soc 85:1083

    Article  Google Scholar 

  2. Fu J, Yatsuda H (1995) Phys Chem Glasses 36:211

    CAS  Google Scholar 

  3. Ardelean I, Cora S (2008) J Mater Sci: Mater Electron 19:584–588

    CAS  Google Scholar 

  4. Stehle C, Vira C, Vira D, Hogan D, Feller S, Affatigato M (1998) Phys Chem Glasses 39:83

    CAS  Google Scholar 

  5. Salagram M, Krishna Prasad V, Subrahmanyam K (2002) J Alloys Compd 335:228–232

    Article  CAS  Google Scholar 

  6. Steger WE, Land Messer H, Boettcher U, Schu Bert E (1990) J Mol Struct 217:34

    Article  Google Scholar 

  7. Bray PJ, Geissberger AE, Bucholtz F, Harns IA (1982) J Non-Cryst Solids 52:45

    Article  CAS  Google Scholar 

  8. Dumbaugh WH (1986) Phys Chem Glasses 27:119–122

    CAS  Google Scholar 

  9. Hazra S, Mandel S, Ghosh A (1997) Phys Rev B 56:8021–8025

    Article  CAS  Google Scholar 

  10. Gerth K, Rüssel C (1997) J Non-Cryst Solids 221:10–17

    Article  CAS  Google Scholar 

  11. Chimalawong P, Kaewkhao J, Limsuwan P (2010) Energy Res J 1(2):176–181

    Article  Google Scholar 

  12. Mott N, Davis E (1979) Electronic Process in Non- Crystalline Materials, 2nd Edition. Clarendon Press, Oxford, p 289

    Google Scholar 

  13. Sze SM (2007) Semiconductor Devices Physics and Technology, 3rd Edition. John Wiley & Sons, Inc., Canada

    Google Scholar 

  14. Urbach F (1953) Phys Rev 92:1324

    Article  CAS  Google Scholar 

  15. Marzouk MA (2012) J Mol Struct 1019:80–90

    Article  CAS  Google Scholar 

  16. Marzouk MA, ElBatal FH, Eisa WH, Ghoneim NA (2014) J Non-Cryst Solids 387:15–160

    Article  Google Scholar 

  17. Marzouk MA, Fayad AM (2014). Appl Phys A Mater Sci Process 116:359–364

    Article  CAS  Google Scholar 

  18. Pan A, Ghosh A (2000) J Non-Cryst Solids 271:157

    Article  CAS  Google Scholar 

  19. Sigel GH, Ginther RJ (1968) Glass Technol 9:66–73

    CAS  Google Scholar 

  20. Cook L, Mader KH (1982) J Amer Ceram Soc 65:597–601

    Article  CAS  Google Scholar 

  21. Ehrt D, Ebeling P, Natura U (2000) J Non-Cryst Solids 263&264:240–250

    Article  CAS  Google Scholar 

  22. Natura U, Ehrt D, Neumman K (2001) Glastech Ber Galss Sci Technol 74:1–9

    Google Scholar 

  23. ElBatal FH, Azooz MA, ElKheshen AA (2009) Trans. Indian Ceram Soc 68(2):81–90

    Article  CAS  Google Scholar 

  24. Marzouk MA, Ouis MA, Hamdy YM (2012) Silicon 4:221–227

    Article  CAS  Google Scholar 

  25. Dimitrov V, Sakka S (1996) J Appl Phys 79:1736

    Article  CAS  Google Scholar 

  26. Sanghi S, Sindhu S, Agarwal A, Seth VP (2004) Radiat Eff Defects Solids 159:369

    Article  CAS  Google Scholar 

  27. Babu AM, Jamalaiah BC, Sasikala T, Saleem SA, Moorthy LR (2011) J Alloys Comp 509:4743

    Article  Google Scholar 

  28. Singh SP, Karmakar B (2012) Bismuth Oxide and Bismuth Oxide Doped Glasses For Optical and Photonic Applications. In: Bismuth: Characteristics, Production and Applications. Materials Science and Technologies. Nova, Hauppauge, New York, Chapter-9

  29. Xu W, Peng M, Ma Z, Dong G, Qiu J (2012) Opt Express 20(14):15692–15702

    Article  CAS  Google Scholar 

  30. Tabaza WAI, Swart HC, Kroon RE (2014) Phys B Phys Condens Matter 439:109–114

    Article  CAS  Google Scholar 

  31. Meng X, Qiu J, Peng M, Chen D, Zhao Q, Jiang X, Zhu C (2005) Opt Express 13:1635

    Article  CAS  Google Scholar 

  32. Singh SP, Chakradhar RPS, Rao JL, Karmakar B (2010) J Alloys Comp 493:256

    Article  CAS  Google Scholar 

  33. Chanthima N, Kaewkhao J, Limsuwan P (2012) Ann Nucl Energy 41:119–124

    Article  CAS  Google Scholar 

  34. Sharma G, Rajendran V, Thind KS, Singh G, Singh A (2009) Physica B 404:3371–3378

    Article  CAS  Google Scholar 

  35. Baia L, Stefen R, Kiefer W, Popp J, Simon S (2002) J Non-Cryst Solids 303:379

    Article  CAS  Google Scholar 

  36. Ahlawat N, Sanghi S, Agarwal A, Bala R (2010) J Mol Struc 963:82

    Article  CAS  Google Scholar 

  37. Srinivasarao G, Veeraiah N (2002) J Phys Chem Solids 63:707

    Article  Google Scholar 

  38. Subbalakshmi P, Veeraiah N (2001) Phys Chem Glasses 42 :307

    CAS  Google Scholar 

  39. Bale S, Purnima M, Srinivasu Ch, Rahman S (2008) J Alloys Compd 457:545

    Article  CAS  Google Scholar 

  40. Rajyasree C, Rao DK (2010) J Non-Cryst Solids 357:836–841

    Article  Google Scholar 

  41. Gao G, Hu L, Fan H, Wang G, Li K, Feng S, Fan S, Chen H (2009) Opti Mater 32:159

    Article  CAS  Google Scholar 

  42. Zheng H, Xu R, Mackenzie JD (1989) J Mater Res 4:911

    Article  CAS  Google Scholar 

  43. Miyaji F, Yoko T, Sakka (1990) J Non-Cryst Solids 126:170

    Article  CAS  Google Scholar 

  44. Dimitrov V, Dimitriev Y, Montenero A (1994) J Non-Cryst Solids 180:51

    Article  CAS  Google Scholar 

  45. Sharma G, Singh K, Manupriya, Mohana S, Singha H, Bindrab S (2006) Radiat Phys Chem 75:959

    Article  CAS  Google Scholar 

  46. Bajaj A, Khanna A, Kulkarni NK, Aggarwal SK (2009) J Am Ceram Soc 92(5):1036–1041

    Article  CAS  Google Scholar 

  47. Simon V, Spinu M, Stefan R (2007) J Mater Sci Mater Med 18:507

    Article  CAS  Google Scholar 

  48. Karthikeyan B, Philip R, Mohan S (2005) Opt Commun 246 :153

    Article  CAS  Google Scholar 

  49. Sharma V, Singh SP, Mudahar GS, Thind KS (2012) New J Glas Ceram 2:128–132

    Article  Google Scholar 

  50. Sailaja S, Raju CN, Reddy CA, Raju BDP, Jho YD, Reddy BS (2013) J Mol Struct 1038:29–34

    Article  CAS  Google Scholar 

  51. Gautam C, Yadav AK, Singh AK A Review on Infrared Spectroscopy of Borate Glasses with Effects of Different Additives. International Scholarly Research Network (ISRN Ceramics) vol 2012, Article ID 428497, pp 1–17

  52. Alemi AA, Sedghi H, Mirmohseni AR, Golsanamlu V (2006) Bull Mater Sci 29(1):55–58

    Article  CAS  Google Scholar 

  53. Abo-Naf SM, Elwan RL, Marzouk MA (2012) J Mater Sci Mater Electron 23:1022–1030

    Article  CAS  Google Scholar 

  54. ElBatal FH (2007) Nucl Instr Meth Phys Res (B) 254:243

    Article  CAS  Google Scholar 

  55. Martin SW (1991) Eur J Solid State Inorg Chem 28:63–205

    Google Scholar 

  56. ElBatal FH (2008) J Mater Sci 43:1070

    Article  CAS  Google Scholar 

  57. Znacik P, Jamnicky M (1992) J Non-Cryst Solids 146:74–80

    Article  Google Scholar 

  58. Brow RK, Clicks CH, Alam TM (2000) J Non-Cryst Solids 274:9

    Article  CAS  Google Scholar 

  59. Abdel-Kader A, Hegazy AA, ElKholy MM (1991) J Mater Sci Mater Electr 2(3):157–163

    Article  CAS  Google Scholar 

  60. Exarhos GJ (1986) In: Wahfen GE, Pevez AC (eds) Structure and Bonding in Crystalline Solids. Planum Press, New York

  61. Ghoneim N, Marzouk M, Daoud T, Ezzeldin F (2013) Indian J Phys 87:39–47

    Article  CAS  Google Scholar 

  62. Marzouk MA, ElBatal FH (2014) Appl Phys A: Mater Sci Proc A 115:903–912

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Marzouk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzouk, M.A., Abo-Naf, S.M., Zayed, H.A. et al. Integration Between Optical and Structural Behavior of Heavy Metal Oxide Glasses Doped with Multiple Glass Formers. Silicon 10, 21–28 (2018). https://doi.org/10.1007/s12633-015-9342-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9342-3

Keywords

Navigation