Skip to main content
Log in

Spectroscopic Inquiry of the Fe2O3-role in Binary Sodium Borate, Sodium Silicate and Sodium Phosphate Glasses and Effects of Gamma Irradiation

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Optical absorption spectral investigations have been carried out on Fe3+ ions doped sodium borate, sodium silicate and sodium phosphate glasses before and after gamma irradiation. The UV-visible absorption spectrum exhibits bands characteristic of Fe3+ ions coordination in each system. Interesting aspects of FT-IR spectra were found, and this gives information about the structure changes in the constituent units of these glass systems as a function of Fe2O3 concentration. All glasses reveal characteristic absorption bands due to the addition of different ratios of iron which explain the state of iron in each system in terms of its valence and coordination number. Results indicate that iron favors a higher oxidation state (tetrahedral coordination) in the case of sodium silicate glasses. The doping with progressive Fe2O3 additions (0.5−7.5 %) has some effect on the number and position of the characteristic bands due to formation of FeO4 groups. The IR absorption spectra after irradiation reveal limited changes in the intensity which can be correlated with minor changes in bond angles and /or bond lengths within the structural units by irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stevels JM (1954) In: Proceedings of the internal commission on glass. Butterworths Scientific Publications, London, pp 455–460

  2. AbouElAzm A (1954) J Soc Glass Technol 38:101–276

    CAS  Google Scholar 

  3. Bingham PA, Parker JM, Searle TM, Williams JM, Fyles K (1999) J Non-Cryst Solids 253:203

    Article  CAS  Google Scholar 

  4. Bingham PA, Parker JM, Searle TM, Smith I (2007) Local structure and medium range ordering of tetrahedrally coordinated Fe3+ ions in alkali-alkaline earth-silica glasses. J Non-Cryst Solids 353:2479–2494

    Article  CAS  Google Scholar 

  5. Bingham PA, Hand RJ, Hannant OM, Forder SD, Kilcoyne SH (2009) Effect of modifier additions on the thermal properties, chemical durability, oxidation state and structure of iron phosphate glasses. J Non-Cryst Solids 355:1526–1538

    Article  CAS  Google Scholar 

  6. Sigel GH, Ginther RJ (1968) Glass Technol 9:66

    CAS  Google Scholar 

  7. Cook L, Mader KH (1982) Ultraviolet transmission characteristics of a Flurophosphate laser glass. J Amer Ceram Soc 65:19

    Article  Google Scholar 

  8. Ehrt D, Seeber W (1991) J Non-Cryst Solids 129:19

    Article  CAS  Google Scholar 

  9. Duffy JA (1997) Charge transfer spectra of metal ions in glass. Phys Chem Glass 38:289

    CAS  Google Scholar 

  10. Bamford CR (1977) Colour generation and control in glass. Glass Science of Technology, vol 2. Elsevier Scientific Publishing Company, Amsterdam

  11. EzzElDin FM, Abdel Rahim F, Shafi NA, ElBatal HA (1988) Formation and decay colour centers induced by gamma rays in alkaliborate glasses containing iron. Phys Chem Glasses 29(6):235–239

    Google Scholar 

  12. ElBatal FH, Azooz MA, Hamdy YM, EzzElDin FM (2010) Production and characterization of glasses and glass-ceramics from Egyptian iron slag waste. Trans Indian Ceramic Soc 69(1):29–36

    Article  CAS  Google Scholar 

  13. Ehrt D, Ebeling P, Natura U (2000) UV transmission and radiation-induced defects in phosphate and fluoride-phosphateglasses. J Non-Cryst Solids 263 & 264:240–250

    Article  Google Scholar 

  14. Ehrt D (2000) UV-absorption and radiation effects in different glasses doped with iron and tin in the ppm range. C R Chimie 5:679–692

    Article  Google Scholar 

  15. ElBatal FH, Selim MS, Marzouk SY, Azooz MA (2007) UV-vis absorption of the transition metal-doped SiO2−B2O3−Na2O glasses. Phys B 398:126

    Article  CAS  Google Scholar 

  16. Marzouk SY, ElBatal FH, Salem HM, AboNaf SM (2007) Absorption spectra of gamma-irradiated TM-doped cabal glasses. Optical Mater 29:1456–1466

    Article  CAS  Google Scholar 

  17. ElBatal FH, Elkheshen AA, Azooz MA, AboNaf SM (2008) Gamma ray interaction with lithium diborate glasses containing transition metal ions. Opt Mater 30:881–890

    Article  CAS  Google Scholar 

  18. ElBatal FH, Hamdy YM, Marzouk SY (2009) UV-visible and infrared absorption spectra of the transition metals-doped lead phosphate glasses and effect ofgamma-irradiatation. J Non-Cryst Solids 355:2439–2447

    Article  CAS  Google Scholar 

  19. ElBatal HA, Abdelghany AM, ElBatal FH, ElBadry KM, Moustafa FA (2011) UV-visible and infrared absorption spectra of gamma irradiated CuO doped lithium phosphate, lead phosphate andzinc phosphate glasses: a comparative study. Phys B 406:3694–3703

    Article  CAS  Google Scholar 

  20. Duffy JA, Ingram MD (1970) J Chem Phys 52:3752

    Article  CAS  Google Scholar 

  21. Duffy JA, Ingram MD (1974) J Phys Chem Glasses 15:34

    CAS  Google Scholar 

  22. Natura U, Ehrt D (1999) Glastech Ber Glass Sci Technol 72:295

    CAS  Google Scholar 

  23. Natura U, Ehrt D, Neumann K (2001) Glastech Ber Glass Sci Technol 74:23

    CAS  Google Scholar 

  24. Moncke D, Ehrt D (2004) Opt Mater 25:425

    Article  CAS  Google Scholar 

  25. Neilson GF, Weinberg MC (1979) J Non-Cryst Solids 34:137

    Article  CAS  Google Scholar 

  26. Zanatto ED, James PF (1983) In: Proceedings of 13th International congress on glassm, Hamburg. Deutsche GlastechanischeGesellschaft, Frankfurt, p 494

  27. Wong J, Angel CA (1976) Glass structure by spectroscopy. Marcel Dekkar, New York

    Google Scholar 

  28. Steele FN, Douglas RW (1965) Phys Chem Glasses 6:246

    CAS  Google Scholar 

  29. Krishna Mohan N, Sambasiva Rao K, Gandhi Y, Veeraiah N (2007) Phys B 389:213–226

    Article  Google Scholar 

  30. Cotton FA, Wilkinson G (1976) Advanced inorganic chemistry. Wiley Eastern Ltd., New Delhi

    Google Scholar 

  31. Bishay A (1970) J Non-Cryst Solids 3:54

    Article  Google Scholar 

  32. Williams RJ, Friebele EJ (1986). In: Weber MJ (ed) CRC Handbook of laser science and technology, optical materials: Part 1, vol III. CRC Press, Boca Rotan, p 299

  33. Friebele EJ (1991) In: Uhlmann dR, Kreidle nJ (eds) Optical properties of glass. American Ceramic Society, Westerville, p 205

  34. Clark DE, Dilmore MF, Ethridge EC, Hench LL (1976) Aqueous corrosion of soda-silica and soda-lime-silica glasses. J Amer Ceram Soc 59:62

    Article  CAS  Google Scholar 

  35. Abo-Naf SM, El-Batal FH, Azooz MA (2002). Mater Chem Phys 77:846

    Article  Google Scholar 

  36. ElBadry KM, Moustafa FA, Azooz MA, ElBatal FH (2000) Indian J Pure & Appl Phys 38:741

    CAS  Google Scholar 

  37. Exarhos GJ, Risen WM (1972) Solid state Comm 755

  38. Nelson BN, Exarhos GJ (1974) J Chem Phys 71:2734

    Google Scholar 

  39. Husung RD, Doremus RH (1990) The infrared transmission spectra of four silicate glasses before and after exposure to water. J Mater-Res 5:2204

    Article  Google Scholar 

  40. Kamitsos EI (2003) Infrared studies of borate glasses. Phys Chem Glasses 44:74

    Google Scholar 

  41. Martin SW (1991) Review of the structures of phosphate glasses. J Solid state Inorg Chem 28:163

    CAS  Google Scholar 

  42. Moustafa YM, El-Egili K (1998) Infrared spectra of sodium phosphate glasses. J Non-Cryst Solids 240:144

    Article  CAS  Google Scholar 

  43. Tarte P (1962) Spectrochim Acta 18:464

    Google Scholar 

  44. Condrate RA (1972) In: Introduction to glass science. Plenum, New York, p 101

  45. Dimitriev YB, Michailova V (1999) J Mater Sci Lett 9:1251

    Article  Google Scholar 

  46. ElBatal FH (2008) Gamma ray interaction with copper-doped sodium phosphate glasses. J Mater Sci 48:1070

    Article  Google Scholar 

  47. Ardelean I (1980) Ph.D. Thesis. University of Cluj-Napaco, Bucharest

  48. Ferreira da Silva MG, Costa BFO (2001) J Non-Cryst Solids 293:534

    Article  Google Scholar 

  49. Dantasa NO, Aytaa WEF, Silva ACA, Canob NF, Silva SW, Morais PC (2011) Spectrochim Acta A 81:140–143

    Article  Google Scholar 

  50. Magdas DA, Cozar O, Chis V, Ardelean I (2008) Vib Spectrosc 48(2):251

    Article  CAS  Google Scholar 

  51. Araujo EB, Eiras JA, de Almeida EF, de Paiva JAC, Sombra ASB (1999) Phys Chem Glasses 40:273

    CAS  Google Scholar 

  52. Wang G, Wang Y, Jin B (1994) SPIE 2287:214

    CAS  Google Scholar 

  53. Fang X, Ray CS, Marasinghe GK, Day DE (2000) J Non-Cryst Sol 263:293

    Article  Google Scholar 

  54. Primak W (1972) J Appl Phys 43:2745

    Article  CAS  Google Scholar 

  55. Hobbs LW, Streeram AN, Jesurum CE, Berfer BA (1996) Nucl Meth Phys Res, (B) 116:18

    Article  CAS  Google Scholar 

  56. ElBatal FH, Marzouk MA, Abdelghany AM (2011) J Non-Cryst Solids 357:1027

    Article  CAS  Google Scholar 

  57. Abdelghany AM, ElBatal HA, Marie IK (2012) Radiat Eff Defects Solids 167:49

    Article  CAS  Google Scholar 

  58. Abdelghany AM, ElBatal HA (2012) J Mol Struct 1024:47

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Abdelghany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayad, A.M., Abdelghany, A.M. Spectroscopic Inquiry of the Fe2O3-role in Binary Sodium Borate, Sodium Silicate and Sodium Phosphate Glasses and Effects of Gamma Irradiation. Silicon 8, 313–324 (2016). https://doi.org/10.1007/s12633-015-9288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9288-5

Keywords

Navigation