Skip to main content
Log in

Admittance Loci Based Design of Plasmonic Sensor Working in Wavelength Interrogation Regime

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A prism coupler based plasmonic sensor consisting of a prism, gold (Au) metal film and dielectric sample has been investigated with the use of admittance loci method in wavelength interrogation mode. Prism materials namely fused silica, chalcogenide (2S2G) and silicon have been used to study their effect on surface plasmon sensing in wavelength interrogation mode by admittance loci plots and by corresponding surface plasmon sensing curves. The performance of the plasmonic sensor under wavelength interrogation mode based on the choice of the prism material has been discussed and validated by the dynamic range and sensitivity plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys 216:398–410

    Article  CAS  Google Scholar 

  2. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Naturforsch 23A:2135–2136

    Google Scholar 

  3. Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sens Actuators 4:299–304

    Article  CAS  Google Scholar 

  4. Homola J, Koudela I, Yee SS (1999) Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens Actuators B 54:16–24

    Article  CAS  Google Scholar 

  5. Person Le J, Colas F, Compère C, Lehaitre M, Anne LM, Boussard-Plèdel C, Bureau B, Adam LJ, Deputier S, Guilloux-Viry M (2008) Surface plasmon resonance in chalcogenide glass-based optical system. Sens Actuators B 130:771–776

    Article  Google Scholar 

  6. Brahmachari K, Ray M (2013) Modelling of chalcogenide glass based plasmonic structure for chemical sensing using near infrared light. Optik Int J Light Electron Opt 124(21):5170–5176

    Article  CAS  Google Scholar 

  7. Brahmachari K, Ray M (2013) Performance of admittance loci based design of plasmonic sensor at infrared wavelength. Opt Eng 52(8):087112-1-8

    Article  Google Scholar 

  8. Palik DE (1998) Handbook of optical constants of solids. Academic Press, New York

    Google Scholar 

  9. Patskovsky S, Kabashin VA, Meunier M, Luong THJ (2004) Near-infrared surface plasmon resonance sensing on a silicon platform. Sens Actuators B 97:409–414

    Article  CAS  Google Scholar 

  10. Patskovsky S, Kabashin VA, Meunier M, Luong THJ (2003) Properties and sensing characteristics of surface plasmon resonance in infrared light. J Opt Soc Am A 20(8):1644–1650

    Article  Google Scholar 

  11. Macleod AH (2010) Thin-Film Optical Filters, 4th edn. CRC Press, Taylor & Francis Group, New York

    Google Scholar 

  12. Lin WC, Chen PK, Su CM, Lee KC, Yang CC (2005) Bio-plasmonics: Nano/micro structure of surface plasmon resonance devices for biomedicine. Opt Quantum Electron 37:1423–1437

    Article  Google Scholar 

  13. Lin WC, Chen PK, Su CM, Hsiao CT, Lee SS, Lin S, Shi JX, Lee KC (2006) Admittance loci design method for multilayer surface plasmon resonance devices. Sens Actuators B 117:219– 229

    Article  CAS  Google Scholar 

  14. Jen JY, Lakhtakia A, Yu WC, Chan YT (2009) Multilayered structures for p- and s-polarized long-range surface- plasmon-polariton propagation. J Opt Soc Am A 26(6):2600–2606

    Article  CAS  Google Scholar 

  15. Brahmachari K, Ghosh S, Ray M (2013) Surface plasmon resonance based sensing of different chemical and biological samples using admittance loci method. Photonic Sens 3(2):159–167

    Article  CAS  Google Scholar 

  16. Brahmachari K, Ray M (2013) Effect of prism material on design of surface plasmon resonance sensor by admittance loci method. Front Optoelectron 6(2):185–193, Brahmachari K, Ray M (2013) Erratum to: Effect of prism material on design of surface plasmon resonance sensor by admittance loci method. Front Optoelectron 6(1):353

    Article  Google Scholar 

  17. Gupta G, Kondoh J (2007) Tuning and sensitivity enhancement of surface plasmon resonance sensor. Sens Actuators B 122:381–388

    Article  CAS  Google Scholar 

  18. Fontana E (2006) Thickness optimization of metal films for the development of surface-plasmon-based sensors for nonabsorbing media. Appl Opt 45(29):7632–7642

    Article  Google Scholar 

  19. Sharma KA, Mohr JG (2008) On the performance of surface plasmon resonance based fibre optic sensor with different bimetallic nanoparticle alloy combinations. J Phys D Appl Phys 41:0551061-7

    Google Scholar 

  20. Sharma KN (2012) Performances of different metals in optical fiber-based surface plasmon resonance sensor. Pramana J Phys 78(1):417–427

    Article  CAS  Google Scholar 

  21. Shalabney A, Abdullahim I (2010) Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sens Actuators A 159:24–32

    Article  CAS  Google Scholar 

  22. Brahmachari K, Ray M (2013) Admittance loci based design of a plasmonic structure using Ag-Au bimetallic alloy film. ISRN Optics 2013:946832-1-7

    Article  Google Scholar 

  23. Brahmachari K, Ray M (2014) Design of nanocomposite film based plasmonic device for gas sensing. (in press)

  24. Brahmachari K, Ray M (2014) Effect of different plasmon active metals on admittance loci based design of a plasmonic sensor. Sens Imaging 15(1):89-1-13

    Article  Google Scholar 

  25. Brahmachari K, Ray M (2014) Admittance loci based design of nanoplasmonic sensor using ceramic and chalcogenide materials. Sens. Actuators A 212:102–109

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brahmachari, K., Ray, M. Admittance Loci Based Design of Plasmonic Sensor Working in Wavelength Interrogation Regime. Silicon 8, 33–42 (2016). https://doi.org/10.1007/s12633-014-9219-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-014-9219-x

Keywords

Navigation