Skip to main content
Log in

Structural and magnetic properties of micropolycrystalline cobalt thin films fabricated by direct current magnetron sputtering

  • Research Article
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Pure cobalt (Co) thin films were fabricated by direct current magnetron sputtering, and the effects of sputtering power and pressure on the microstructure and electromagnetic properties of the films were investigated. As the sputtering power increases from 15 to 60 W, the Co thin films transition from an amorphous to a polycrystalline state, accompanied by an increase in the intercrystal pore width. Simultaneously, the resistivity decreases from 276 to 99 µΩ·cm, coercivity increases from 162 to 293 Oe, and in-plane magnetic anisotropy disappears. As the sputtering pressure decreases from 1.6 to 0.2 Pa, grain size significantly increases, resistivity significantly decreases, and the coercivity significantly increases (from 67 to 280 Oe), which can be attributed to the increase in defect width. Correspondingly, a quantitative model for the coercivity of Co thin films was formulated. The polycrystalline films sputtered under pressures of 0.2 and 0.4 Pa exhibit significant in-plane magnetic anisotropy, which is primarily attributable to increased microstress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.E. Kaloyeros, Y.L. Pan, J. Goff, and B. Arkles, Editors’ choice—Review—Cobalt thin films: Trends in processing technologies and emerging applications, ECS J. Solid State Sci. Technol., 8(2019), No. 2, p. 119.

    Article  Google Scholar 

  2. J. Mohapatra, M.Y. Xing, J. Elkins, and J.P. Liu, Hard and semi-hard magnetic materials based on cobalt and cobalt alloys, J. Alloys Compd., 824(2020), art. No. 153874.

  3. E. Abualgassem, M. Maarouf, A. Bake, D. Cortie, K. Alam, and M.B. Haider, Optical and magnetic properties of cobalt doped TiN thin films grown by RF/DC magnetron sputtering, J. Magn. Magn. Mater., 550(2022), art. No. 169023.

  4. G.D. Soria, K. Freindl, J.E. Prieto, et al., Growth and characterization of ultrathin cobalt ferrite films on Pt(111), Appl. Surf. Sci., 586(2022), art. No. 152672.

  5. V. Shukla, C. Mukherjee, R. Chari, S. Rai, K.S. Bindra, and A. Banerjee, Uniaxial magnetic anisotropy of cobalt thin films on different substrates using CW-MOKE technique, J. Magn. Magn. Mater., 370(2014), p. 100.

    Article  CAS  ADS  Google Scholar 

  6. Y. Shiratsuchi, T. Murakami, Y. Endo, and M. Yamamoto, Evolution of magnetic state of ultrathin co films with volmer-weber growth, Jpn. J. Appl. Phys., 44(2005), No. 12R, art. No. 8456.

  7. C.Y. Hsu, C.H.T. Chang, W.H. Chen, J.L. Tsai, and J.S. Tsay, Comparative studies of magnetic properties of Co films on annealed and unannealed rubrene/Si(100), J. Alloys Compd., 576(2013), p. 393.

    Article  CAS  Google Scholar 

  8. S.D. Elliott, G. Dey, and Y. Maimaiti, Classification of processes for the atomic layer deposition of metals based on mechanistic information from density functional theory calculations, J. Chem. Phys., 146(2017), No. 5, art. No. 052822.

  9. T. Kuschel, T. Becker, D. Bruns, et al., Uniaxial magnetic anisotropy for thin Co films on glass studied by magnetooptic Kerr effect, J. Appl. Phys., 109(2011), No. 9, art. No. 093907.

  10. D. Kumar and A. Gupta, Evolution of structural and magnetic properties of sputtered nanocrystalline Co thin films with thermal annealing, J. Magn. Magn. Mater., 308(2007), No. 2, p. 318.

    Article  CAS  ADS  Google Scholar 

  11. R. Gupta, A. Khandelwal, D.K. Avasthi, K.G.M. Nair, and A. Gupta, Phase transitions in Co thin film induced by low energy and high energy ion beam irradiation, J. Appl. Phys., 107(2010), No. 3, art. No. 033902.

  12. A. Jaiswal, S. Rai, M.K. Tiwari, V.R. Reddy, G.S. Lodha, and R.V. Nandedkar, Effect of Si layer thickness on the structural properties of a Co/Si multilayer system, J. Phys.: Condens. Matter, 19(2007), No. 1, art. No. 016001.

  13. N. Pandey, M. Gupta, R. Gupta, S. Chakravarty, N. Shukla, and A. Devishvili, Structural and magnetic properties of Co-N thin films deposited using magnetron sputtering at 523 K, J. Alloys Compd., 694(2017), p. 1209.

    Article  CAS  Google Scholar 

  14. Q.Y. Qian, F. Wang, X.K. Zhang, and Q.P. Zhao, Direct electro-phosphorization of nickel and cobalt films in hypophosphite solution for efficient hydrogen evolution, Inorg. Chem. Commun., 127(2021), art. No. 108555.

  15. R. Hippler, M. Cada, P. Ksirova, et al., Deposition of cobalt oxide films by reactive pulsed magnetron sputtering, Surf. Coat. Technol., 405(2021), art. No. 126590.

  16. L.B. Gao, S.W. Jiang, and R.G. Li, Effect of sputtering pressure on structure and dielectric properties of bismuth magnesium niobate thin films prepared by RF magnetron sputtering, Thin Solid Films, 603(2016), p. 391.

    Article  CAS  ADS  Google Scholar 

  17. J. Xu, M. Gao, L.L. Lu, Y.L. Wang, and X. Liu, Study on the resistivity and infrared emissivity of TiNx films at different sputtering power, Infrared Phys. Technol., 119(2021), art. No. 103946.

  18. A. Sharma, S. Mohan, and S. Suwas, The effect of the deposition rate on the crystallographic texture, microstructure evolution and magnetic properties in sputter deposited Ni-Mn-Ga thin films, Thin Solid Films, 616(2016), p. 530.

    Article  CAS  ADS  Google Scholar 

  19. S. Bose, S. Mandal, A.K. Barua, and S. Mukhopadhyay, Properties of boron doped ZnO films prepared by reactive sputtering method: Application to amorphous silicon thin film solar cells, J. Mater. Sci. Technol., 55(2020), p. 136.

    Article  CAS  Google Scholar 

  20. C.D. Dai, Y. Fu, J.X. Guo, and C.W. Du, Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1388.

    Article  CAS  Google Scholar 

  21. F.Y. Liang, J.R. Yang, H.Q. Wang, and J.W. Wu, Fabrication of Gd2O3-doped CeO2 thin films through DC reactive sputtering and their application in solid oxide fuel cells, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1190.

    Article  CAS  Google Scholar 

  22. X.Z. Zhang, Y.P. Xia, X. Liu, Y.M. Zhong, H.B. Zhao, and P.H. Wang, Effect of annealing temperature on the microstructure and optoelectrical properties of ZnO thin films and their application in self-powered accelerometers, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1186.

    Article  CAS  Google Scholar 

  23. M.A. Basha, C.L. Prajapat, S. Singh, and S. Basu, Optimization and characterization of cobalt & gadolinium films using X-ray scattering, [in] AIP Conference Proceedings, Bhubaneswar, 2017.

  24. Y. Wang, Study on Microstructure and Properties of Co and CoTaZr Thin films by Magnetron Sputtering [Dissertaion], Guangdong University of Technology, Guangzhou, 2012.

    Google Scholar 

  25. K. Bukharia, P. Karmakar, D. Kumar, V.R. Reddy, and A. Gupta, Evolution of magnetic anisotropy in cobalt film on nanopatterned silicon substrate studied in situ using MOKE, J. Magn. Magn. Mater., 497(2020), art. No. 165934.

  26. M.O. Liedke, M. Körner, K. Lenz, et al., Crossover in the surface anisotropy contributions of ferromagnetic films on rippled Si surfaces, Phys. Rev. B, 87(2013), No. 2, art. No. 024424.

  27. J. W. Huang and Z. Li, X-ray Diffraction of Polycrystalline Materials: Experimental Principles, Methods and Applications, Metallurgical Industry Press, Beijing, 2012, p. 119.

    Google Scholar 

  28. D.W. Hoffman and J.A. Thornton, The compressive stress transition in Al, V, Zr, Nb and W metal films sputtered at low working pressures, Thin Solid Films, 45(1977), No. 2, p. 387.

    Article  CAS  ADS  Google Scholar 

  29. J.H. Cha, K. Ashok, N.J. Suthan Kissinger, et al., Effect of thermal annealing on the structure, morphology, and electrical properties of Mo bottom electrodes for solar cell applications, J. Korean Phy. Soc., 59(2011), No. 3, p. 2280.

    Article  CAS  ADS  Google Scholar 

  30. H. Ahn, D.C. Lee, and Y. Um, Substrate temperature effects on DC sputtered Mo thin film, Appl. Sci. Converg. Technol., 26(2017), No. 1, p. 11.

    Article  Google Scholar 

  31. M. Kumar, A. Kumar, and A.C. Abhyankar, Influence of texture coefficient on surface morphology and sensing properties of W-doped nanocrystalline tin oxide thin films, ACS Appl. Mater. Interfaces, 7(2015), No. 6, p. 3571.

    Article  CAS  PubMed  Google Scholar 

  32. Y. Kajikawa, S. Noda, and H. Komiyama, Comprehensive perspective on the mechanism of preferred orientation in reactive-sputter-deposited nitrides, J. Vac. Sci. Technol. A: Vac. Surf. Films, 21(2003), No. 6, p. 1943.

    Article  CAS  ADS  Google Scholar 

  33. D.D. Wang, Theoretical Analysis About the Surface Structure and Energy Anisotropy of Crystal [Dissertation], Shanxi Normal University, Shanxi, 2007.

    Google Scholar 

  34. S. Mahieu and D. Depla, Reactive sputter deposition of TiN layers: Modelling the growth by characterization of particle fluxes towards the substrate, J. Phys. D: Appl. Phys., 42(2009), No. 5, art. No. 053002.

  35. G. Regmi and S. Velumani, Impact of target power on the properties of sputtered intrinsic zinc oxide (i-ZnO) thin films and its thickness dependence performance on CISe solar cells, Opt. Mater., 119(2021), art. No. 111350.

  36. M.B. Tian and Z.C. Li, Material Technology and Thin Film Materials, 5th, Tsinghua University Press, Beijing, 2018.

    Google Scholar 

  37. N. Daichakomphu, S. Abbas, T.L. Chou, et al., Understanding the effect of sputtering pressures on the thermoelectric properties of GeTe films, J. Alloys Compd., 893(2022), art. No. 162342.

  38. D.T.S. Perkins and R.A. Smith, Drude conductivity of a granular metal, Ann. Phys., 418(2020), art. No. 168170.

  39. J.H. Yoon, S. Cho, W.M. Kim, et al., Optical analysis of the microstructure of a Mo back contact for Cu(In, Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity, Sol. Energy Mater. Sol. Cells, 95(2011), No. 11, p. 2959.

    Article  CAS  Google Scholar 

  40. A.K. Battu, N. Makeswaran, and C.V. Ramana, Fabrication, characterization and optimization of high conductivity and high quality nanocrystalline molybdenum thin films, J. Mater. Sci. Technol., 35(2019), No. 11, p. 2734.

    Article  CAS  Google Scholar 

  41. X.M. Liu and G. Zangari, Easy axis dispersion and micromagnetic structure of electrodeposited, high moment Fe–Co–Ni films, J. Appl. Phys., 90(2001), No. 10, p. 5247.

    Article  CAS  ADS  Google Scholar 

  42. G. Durin and S. Zapperi, The barkhausen effect, [in] G. Bertotti and I.D. Mayergoyz, eds., The Science of Hysteresis, Elsevier, Amsterdam, (2006), p. 181.

    Chapter  Google Scholar 

  43. J. D. Livingston and M. D. McConnell, Domain-wall energy in cobalt-rare-earth compounds, J. Appl. Phys., 43(1972), No. 11, p. 4756.

    Article  CAS  ADS  Google Scholar 

  44. R. Friedberg and D.I. Paul, New theory of coercive force of ferromagnetic materials, Phys. Rev. Lett., 34(1975), No. 19, p. 1234.

    Article  CAS  ADS  Google Scholar 

  45. B. Ma, X.Q. Bao, A.Z. Sun, J.H. Li, and X.X. Gao, Microstructure evolution and coercivity mechanism of hydrogenation-disproportionation-desorption-recombination (HDDR) treated Nd–Fe–B strip cast alloys, J. Rare Earths, 40(2022), No. 5, p. 792.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Key Research and Development Program of China (No. 2017YFB0305500) and grants from the State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Xiao.

Ethics declarations

All authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, K., Li, Z., Fang, M. et al. Structural and magnetic properties of micropolycrystalline cobalt thin films fabricated by direct current magnetron sputtering. Int J Miner Metall Mater 31, 384–394 (2024). https://doi.org/10.1007/s12613-023-2715-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2715-5

Keywords

Navigation