Skip to main content
Log in

An integrated and efficient process for borax preparation and magnetite recovery from soda-ash roasted ludwigite ore under CO–CO2–N2 atmosphere

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

To realize the comprehensive utilization of ludwigite ore, an integrated and efficient route for the boron and iron separation was proposed in this work, which via soda-ash roasting under CO–CO2–N2 atmosphere followed by grind-leaching, magnetic separation, and CO2 carbonation. The effects of roasting temperature, roasting time, CO/(CO+CO2) composition, and Na2CO3 dosage on the boron and iron separation indices were primarily investigated. Under the optimized conditions of the roasting temperature of 850°C, roasting time of 60 min, soda ash dosage of 20wt%, and CO/(CO+CO2) of 10vol%, 92% of boron was leached during wet grinding, and 88.6% of iron was recovered during the magnetic separation and magnetic concentrate with a total iron content of 61.51wt%. Raman spectra and 11B NMR results indicated that boron exists as B(OH) 4 in the leachate, from which high-purity borax pentahydrate could be prepared by CO2 carbonation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.R. Burkhardt and K. Matos, Boron reagents in process chemistry: Excellent tools for selective reductions, Chem. Rev., 106(2006), No. 7, p. 2617.

    Article  CAS  Google Scholar 

  2. N.A. El-Alaily and R.M. Mohamed, Effect of irradiation on some optical properties and density of lithium borate glass, Mater. Sci. Eng. B, 98(2003), No. 3, p. 193.

    Article  Google Scholar 

  3. C. Mermer and H. Şengül, Addressing potential resource scarcity for boron mineral: A system dynamics perspective, J. Clean. Prod., 270(2020), art. No. 122192.

  4. V. Thakur, A. Singh, R. Punia, S. Dahiya, and L. Singh, Structural properties and electrical transport characteristics of modified lithium borate glass ceramics, J. Alloys Compd., 696(2017), p. 529.

    Article  CAS  Google Scholar 

  5. X. Zhang, G.H. Li, J.X. You, et al., Extraction of boron from ludwigite ore: Mechanism of soda-ash roasting of lizardite and szaibelyite, Minerals, 9(2019), No. 9, art. No. 533.

  6. M.X. Zhu, X.R. Zhou, H. Zhang, L. Wang, and H.Y. Sun, International trade evolution and competition prediction of boron ore: Based on complex network and link prediction, Resour. Policy, 82(2023), art. No. 103542.

  7. S. Jiao, H.Y. Zheng, Y.Y. Qu, B.Q. Liu, and B.B. Han, Supply and demand situation of global boron resources, Nat. Resour. Inf., 2020, No. 10, p. 85.

  8. J. An and X.X. Xue, Life cycle environmental impact assessment of borax and boric acid production in China, J. Clean. Prod., 66(2014), p. 121.

    Article  CAS  Google Scholar 

  9. Z.P. Zhu, J.X. You, X. Zhang, et al., Recycling excessive alkali from reductive soda ash roasted ludwigite ore: Toward a zero-waste approach, ACS Sustainable Chem. Eng., 8(2020), No. 13, p. 5317.

    Article  CAS  Google Scholar 

  10. L. Ye, Z.W. Peng, R. Tian, et al., A novel process for highly efficient separation of boron and iron from ludwigite ore based on low-temperature microwave roasting, Powder Technol., 410(2022), art. No. 117848.

  11. Y. Li, J.T. Gao, X. Lan, and Z.C. Guo, A novel method for efficient recovery of boron from boron-bearing iron concentrate: Mineral phase transformation and low-temperature separation via super-gravity, Miner. Eng., 189(2022), art. No. 107899.

  12. X. Zhang, G.H. Li, M.J. Rao, et al., Co-conversion mechanisms of boron and iron components of ludwigite ore during reductive soda-ash roasting, Metals, 10(2020), No. 11, art. No. 1514.

  13. G.H. Li, L. Fang, X. Zhang, et al., Utilization of the MgO-rich residue originated from ludwigite ore: Hydrothermal synthesis of MHSH whiskers, Minerals, 7(2017), No. 8, art. No. 138.

  14. Y.J. Liu, T. Jiang, W.J. Huang, C.H. Liu, J.P. Wang, and X.X. Xue, High temperature dielectric properties of ludwigite and its effect on microwave heating process, J. Microw. Power Electromagn. Energy, 53(2019), No. 3, p. 195.

    Article  Google Scholar 

  15. G. Wang, Q.G. Xue, and J.S. Wang, Carbothermic reduction characteristics of ludwigite and boron-iron magnetic separation, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1000.

    Article  CAS  Google Scholar 

  16. G.J. Cheng, X.Z. Liu, H. Yang, X.X. Xue, and L.J. Li, Sintering and smelting property investigations of ludwigite, Processes, 10(2022), No. 1, art. No. 159.

  17. S.L. Liu, C.M. Cui, and X.P. Zhang, Pyrometallurgical separation of boron from iron in ludwigite ore, ISIJ Int., 38(1998), No. 10, p. 1077.

    Article  CAS  Google Scholar 

  18. G. Wang, Q.G. Xue, and J.S. Wang, Effect of Na2CO3 on reduction and melting separation of ludwigite/coal composite pellet and property of boron-rich slag, Trans. Nonferrous Met. Soc. China, 26(2016), No. 1, p. 282.

    Article  CAS  Google Scholar 

  19. Y.Z. Xu, T. Jiang, H.Y. Gao, W.Y. Chen, and X.X. Xue, The changes of surface properties and enhancement of B2O3 leaching ratio of boron concentrate via wet ball milling, Powder Technol., 326(2018), p. 89.

    Article  CAS  Google Scholar 

  20. G.H. Li, B.J. Liang, M.J. Rao, Y.B. Zhang, and T. Jiang, An innovative process for extracting boron and simultaneous recovering metallic iron from ludwigite ore, Miner. Eng., 56(2014), p. 57.

    Article  CAS  Google Scholar 

  21. B.J. Liang, G.H. Li, M.J. Rao, Z.W. Peng, Y.B. Zhang, and T. Jiang, Water leaching of boron from soda-ash-activated ludwigite ore, Hydrometallurgy, 167(2017), p. 101.

    Article  CAS  Google Scholar 

  22. J.X. You, J. Wang, J. Luo, Z.W. Peng, M.J. Rao, and G.H. Li, A facile route to the value-added utilization of ludwigite ore: Boron extraction and MxMg1−xFe2O4 spinel ferrites preparation, J. Clean. Prod., 375(2022), art. No. 134206.

  23. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, and Standardization Administration of the People’s Republic of China, GB/T 6730.65-2009: Iron Ores—Determination of Total Iron Content—Titanium (III) Chloride Reduction Potassium Dichromate Titration Methods (Routine Method), General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, and Standardization Administration of the People’s Republic of China, Beijing, 2009.

    Google Scholar 

  24. S. Bhagyaraj, M.A. Al-Ghouti, P. Kasak, and I. Krupa, An updated review on boron removal from water through adsorption processes, Emergent Mater., 4(2021), No. 5, p. 1167.

    Article  CAS  Google Scholar 

  25. M. Dolati, A.A. Aghapour, H. Khorsandi, and S. Karimzade, Boron removal from aqueous solutions by electrocoagulation at low concentrations, J. Environ. Chem. Eng., 5(2017), No. 5, p. 5150.

    Article  CAS  Google Scholar 

  26. F.L. Theiss, G.A. Ayoko, and R.L. Frost, Removal of boron species by layered double hydroxides: A review, J. Colloid Interface Sci., 402(2013), p. 114.

    Article  CAS  Google Scholar 

  27. Y.Q. Zhou, C.H. Fang, Y. Fang, and F.Y. Zhu, Polyborates in aqueous borate solution: A Raman and DFT theory investigation, Spectrochim. Acta A Mol. Biomol. Spectrosc., 83(2011), No. 1, p. 82.

    Article  CAS  Google Scholar 

  28. Y.Q. Zhou, Y. Fang, C.H. Fang, F.Y. Zhu, H.W. Ge, and Q.L. Chen, Solution structure of energy stored system I: Aqua-B(OH) 4 : A DFT, car-parrinello molecular dynamics, and Raman study, J. Phys. Chem. B, 117(2013), No. 39, p. 11709.

    Article  CAS  Google Scholar 

  29. F.Y. Zhu, W.Q. Zhang, H.Y. Liu, et al, Micro-Raman and density functional theory analyses of ion pairs in concentrated sodium tetrahydroxyborate droplets, Spectrochim. Acta A, 224(2020), art. No. 117308.

  30. J.T. Kloprogge, D. Wharton, L. Hickey, and R.L. Frost, Infrared and Raman study of interlayer anions CO 2−3 , NO 3 , SO 2−4 and ClO 4 in Mg/Al-hydrotalcite, Am. Mineral., 87(2002), No. 5–6, p. 623.

    Article  CAS  Google Scholar 

  31. S.J. Palmer, R.L. Frost, G. Ayoko, and T. Nguyen, Synthesis and Raman spectroscopic characterisation of hydrotalcite withCO 2−3 and (MoO4)2− anions in the interlayer, J. Raman Spectrosc., 39(2008), p. 395.

    Article  CAS  Google Scholar 

  32. W. Chen, L.Z. Ouyang, J.W. Liu, et al., Hydrolysis and regeneration of sodium borohydride (NaBH4) - A combination of hydrogen production and storage, J. Power Sources, 359(2017), p. 400.

    Article  CAS  Google Scholar 

  33. L.Z. Ouyang, W. Chen, J.W. Liu, M. Felderhoff, H. Wang, and M. Zhu, Enhancing the regeneration process of consumed NaBH4 for hydrogen storage, Adv. Energy Mater., 7(2017), No. 19, art. No. 1700299.

  34. C.L. Qin, L.Z. Ouyang, H. Wang, J.W. Liu, H.Y. Shao, and M. Zhu, Regulation of high-efficient regeneration of sodium borohydride by magnesium-aluminum alloy, Int. J. Hydrogen En- ergy, 44(2019), No. 55, p. 29108.

    Article  CAS  Google Scholar 

  35. H. Zhong, L.Z. Ouyang, M.Q. Zeng, et al., Realizing facile regeneration of spent NaBH4 with Mg-Al alloy, J. Mater. Chem. A, 7(2019), No. 17, p. 10723.

    Article  CAS  Google Scholar 

  36. I.K. Battisha, A. EI Beyally, S.A. EI Mongy, and A.M. Nahrawi, Development of the FTIR properties of nano-structure silica gel doped with different rare earth elements, prepared by sol-gel route, J. Sol-Gel Sci. Technol., 41(2007), p. 129.

    Article  CAS  Google Scholar 

  37. A. Fidalgo and L.M. Ilharco, The defect structure of sol-gel-derived silica/polytetrahydrofuran hybrid films by FTIR, J. Non Cryst. Solids, 283(2001), No. 1–3, p. 144.

    Article  CAS  Google Scholar 

  38. I. Garcia-Lodeiro, A. Palomo, A. Fernández-Jiménez, and D.E. MacPhee, Compatibility studies between N–A–S–H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O, Cent. Concr. Res., 41(2011), No. 9, p. 923.

    Article  CAS  Google Scholar 

  39. S.A. Devi, D. Philip, and G. Aruldhas, Infrared, polarized Raman, and SERS spectra of borax, J. Solid State Chem., 113(1994), No. 1, p. 157.

    Article  CAS  Google Scholar 

  40. A. Winterstein-Beckmann, D. Möncke, D. Palles, E.I. Kamitsos, and L. Wondraczek, Structure and properties of orthoborate glasses in the Eu2O3–(Sr, Eu)O–B2O3 quaternary, J. Phys. Chem. B, 119(2015), No. 7, p. 3259.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2020YFC1909803), the Basic Science Center Project for the National Natural Science Foundation of China (No. 72088101), and the Graduate Research and Innovative Project of Central South University (No. 506021739).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingjun Rao or Guanghui Li.

Ethics declarations

Mingjun Rao is a youth editorial board member for IJMMM and is not involved in the editorial review or the decision to publish this article. All authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

12613_2023_2643_MOESM1_ESM.docx

An integrated and efficient process for borax preparation and magnetite recovery from soda-ash roasted ludwigite ore under CO–CO2–N2 atmosphere

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, J., Wang, J., Rao, M. et al. An integrated and efficient process for borax preparation and magnetite recovery from soda-ash roasted ludwigite ore under CO–CO2–N2 atmosphere. Int J Miner Metall Mater 30, 2169–2181 (2023). https://doi.org/10.1007/s12613-023-2643-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2643-4

Keywords

Navigation