Skip to main content
Log in

Multiphysics processes in the interfacial transition zone of fiber-reinforced cementitious composites under induced curing pressure and implications for mine backfill materials: A critical review

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The mesoscale fiber–matrix interfacial transition zone (FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitious composites (FRCCs). This critical review establishes the link among induced curing pressure (i.e., external loading condition), multiphysics processes (i.e., internal governing mechanism), and interface behavior (i.e., material behavior) for FRCC materials through analysis of the state-of-the-art research findings on the FM-ITZ of FRCC materials. The following results are obtained. For the mechanical process, the induced curing pressure changes the stress state and enhances multicracking behavior, which can strengthen the FM-ITZ. For the hydraulic process, the strengthened seepage of the FM-ITZ under induced curing pressure weakens the effective stress and exaggerates the deficiency in water retention capacity between the bulk matrix and the FM-ITZ. For the thermal process, the induced curing pressure causes a steep temperature gradient in the FM-ITZ and thus influences the temperature evolution and thermally-induced microcracks in the FM-ITZ. For the chemical process, the induced curing pressure enhances hydration kinetics and results in the formation of additional hydration products in the FM-ITZ. Moreover, recommendations are proposed on the basis of findings from this review to facilitate the implementation of fiber reinforcement in cemented paste backfill technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Wu, R.K. Zhao, C.W. Xie, and S. Liu, Effect of curing humidity on performance of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1046.

    Article  CAS  Google Scholar 

  2. A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717.

    Article  CAS  Google Scholar 

  3. Q. Zhou, J.H. Liu, A.X. Wu, and H.J. Wang, Early-age strength property improvement and stability analysis of unclassified tailing paste backfill materials, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1191.

    Article  CAS  Google Scholar 

  4. S. Cao, W.D. Song, and E. Yilmaz, Influence of structural factors on uniaxial compressive strength of cemented tailings backfill, Constr. Build. Mater., 174(2018), p. 190.

    Article  Google Scholar 

  5. D. Deb and S. Jain, Compaction-based analytical stress model for 3D inclined backfilled stopes, Int. J. Geomech., 18(2018), No. 4, art. No. 04018009.

  6. S.H. Yin, Y.Q. Hou, X. Chen, M.Z. Zhang, H.H. Du, and C. Gao, Mechanical behavior, failure pattern and damage evolution of fiber-reinforced cemented sulfur tailings backfill under uniaxial loading, Constr. Build. Mater., 332(2022), art. No. 127248.

  7. K.H. Tan, J. Walraven, S. Grünewald, J. Rovers, and B. Cotovanu, Correlations among notched beam tests, double punch tests and round panel tests for a high performance fibre concrete cast at site, Cem. Concr. Compos., 122(2021), art. No. 104138.

  8. H. Soleimani-Fard, D. König, and M. Goudarzy, Plane strain shear strength of unsaturated fiber-reinforced fine-grained soils, Acta Geotech., 17(2022), No. 1, p. 105.

    Article  Google Scholar 

  9. Z.Q. Huang, S. Cao, and E. Yilmaz, Investigation on the flexural strength, failure pattern and microstructural characteristics of combined fibers reinforced cemented tailings backfill, Constr. Build. Mater., 300(2021), art. No. 124005.

  10. J.J. Li, S. Cao, E. Yilmaz, and Y.P. Liu, Compressive fatigue behavior and failure evolution of additive fiber-reinforced cemented tailings composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 345.

    Article  CAS  Google Scholar 

  11. T. Oh, I. You, N. Banthia, and D.Y. Yoo, Deposition of nanosilica particles on fiber surface for improving interfacial bond and tensile performances of ultra-high-performance fiber-reinforced concrete, Composites Part B, 221(2021), art. No. 109030.

  12. B. Behforouz, V.S. Balkanlou, F. Naseri, E. Kasehchi, E. Mohseni, and T. Ozbakkaloglu, Investigation of eco-friendly fiber-reinforced geopolymer composites incorporating recycled coarse aggregates, Int. J. Environ. Sci. Technol., 17(2020), No. 6, p. 3251.

    Article  CAS  Google Scholar 

  13. C. Yang, P. Yang, W.S. Lv, and Z.K. Wang, Mechanical performance of confined consolidation on the strength development of cemented paste backfill, Geotech. Geol. Eng., 38(2020), No. 2, p. 1097.

    Article  Google Scholar 

  14. M. Roig-Flores, F. Šimičević, A. Maričić, P. Serna, and M. Horvat, Interfacial transition zone in mature fiber-reinforced concretes, ACI Mater. J., 115(2018), No. 4, p. 623.

    Google Scholar 

  15. H. Baji and C.Q. Li, An analytical solution for hydraulic conductivity of concrete considering properties of the interfacial transition zone (ITZ), Cem. Concr. Compos., 91(2018), p. 1.

    Article  CAS  Google Scholar 

  16. L.H. Xu, F.Q. Deng, and Y. Chi, Nano-mechanical behavior of the interfacial transition zone between steel-polypropylene fiber and cement paste, Constr. Build. Mater., 145(2017), p. 619.

    Article  CAS  Google Scholar 

  17. Q.N. Wang, G.S. Zhang, Y.Y. Tong, and C.P. Gu, Prediction on permeability of engineered cementitious composites, Crystals, 11(2021), No. 5, art. No. 526.

  18. J. Nemecek, P. Kabele, and Z. Bittnar, Nanoindentation based assessment of micromechanical properties of fiber reinforced cementitious composite, [in] Proceedings of the 6th International RILEM Symposium on Fibre Reinforced Concretes, Varenna, 2004, p. 401.

  19. V. Zacharda, P. Štemberk, and J. Němeček, Nanomechanical performance of interfacial transition zone in fiber reinforced cement matrix, Key Eng. Mater., 760(2018), p. 251.

    Article  Google Scholar 

  20. R.S. Teixeira, G.H.D. Tonoli, S.F. Santos, et al., Nanoindentation study of the interfacial zone between cellulose fiber and cement matrix in extruded composites, Cem. Concr. Compos., 85(2018), p. 1.

    Article  CAS  Google Scholar 

  21. L. Li, Z.L. Li, M.L. Cao, Y. Tang, and Z. Zhang, Nanoindentation and porosity fractal dimension of calcium carbonate whisker reinforced cement paste after elevated temperatures (up to 900°c), Fractals, 29(2021), No. 2, art. No. 2140001.

  22. J.H. Han, D.C. Huang, J.Y. Chen, and X.F. Lan, Experiment study and finite element analysis of the coupling effect of steel fiber length and coarse aggregate maximum size on the fracture properties of concrete, Crystals, 11(2021), No. 8, art. No. 850.

  23. J.L. Zhang, X. Liu, Y. Yuan, and H.A. Mang, Multiscale modeling of the effect of the interfacial transition zone on the modulus of elasticity of fiber-reinforced fine concrete, Comput. Mech., 55(2015), No. 1, p. 37.

    Article  Google Scholar 

  24. X. Qian, B. Shen, B. Mu, and Z. Li, Enhancement of aging resistance of glass fiber reinforced cement, Mater. Struct., 36(2003), No. 5, p. 323.

    Article  CAS  Google Scholar 

  25. Y.C. Wang, L.Z. Wei, J.T. Yu, and K.Q. Yu, Mechanical properties of high ductile magnesium oxychloride cement-based composites after water soaking, Cem. Concr. Compos., 97(2019), p. 248.

    Article  CAS  Google Scholar 

  26. T. Zhang, Y. Zhang, H.H. Zhu, and Z.G. Yan, Experimental investigation and multi-level modeling of the effective thermal conductivity of hybrid micro-fiber reinforced cementitious composites at elevated temperatures, Compos. Struct., 256(2021), art. No. 112988.

  27. R.J. Flatt, G.W. Scherer, and J.W. Bullard, Why alite stops hydrating below 80% relative humidity, Cem. Concr. Res., 41(2011), No. 9, p. 987.

    Article  CAS  Google Scholar 

  28. A. Zhou, H.N. Wei, T.J. Liu, D.J. Zou, Y. Li, and R.Y. Qin, Interfacial technology for enhancement in steel fiber reinforced cementitious composite from nano to macroscale, Nanotechnol. Rev., 10(2021), No. 1, p. 636.

    Article  CAS  Google Scholar 

  29. J.S. Cheng, T. Li, X.Q. Liu, and L.H. Zhao, A 3D discrete FEM iterative algorithm for solving the water pipe cooling problems of massive concrete structures, Int. J. Numer. Anal. Methods Geomech., 40(2016), p. 487.

    Article  Google Scholar 

  30. J.M. Mayoral and M.P. Romo, Seismic response of bridges with massive foundations, Soil Dyn. Earthq. Eng., 71(2015), p. 88.

    Article  Google Scholar 

  31. E.O.L. Lantsoght, How do steel fibers improve the shear capacity of reinforced concrete beams without stirrups? Composites Part B, 175(2019), art. No. 107079.

  32. B.R. Ellingwood and Y. Mori, Probabilistic methods for condition assessment and life prediction of concrete structures in nuclear power plants, Nucl. Eng. Des., 142(1993), No. 2–3, p. 155.

    Article  CAS  Google Scholar 

  33. A.J. Choobbasti, S.S. Kutanaei, and M. Ghadakpour, Shear behavior of fiber-reinforced sand composite, Arab. J. Geosci., 12(2019), No. 5, p. 1.

    Article  CAS  Google Scholar 

  34. S. Abdallah, M.Z. Fan, and D.W.A. Rees, Bonding mechanisms and strength of steel fiber-reinforced cementitious composites: Overview, J. Mater. Civ. Eng., 30(2018), No. 3, art. No. 04018001.

  35. A. Dube, Fiber Reinforced Concrete: Characterization of Flexural Toughness & Some Studies on Fiber-Matrix Bond-Slip Interaction [Dissertation], University of British Columbia, Vancouver, BC, 1999.

    Google Scholar 

  36. A. Dalalbashi, B. Ghiassi, D.V. Oliveira, and A. Freitas, Effect of test setup on the fiber-to-mortar pull-out response in TRM composites: Experimental and analytical modeling, Composites Part B, 143(2018), p. 250.

    Article  CAS  Google Scholar 

  37. T.A. Liu, R.X. Bai, Z.T. Chen, Y.Z. Li, and Y.Z. Yang, Tailoring of polyethylene fiber surface by coating silane coupling agent for strain hardening cementitious composite, Constr. Build. Mater., 278(2021), art. No. 122263.

  38. H.Z. Jiao, W.L. Chen, A.X. Wu, et al., Flocculated unclassified tailings settling efficiency improvement by particle collision optimization in the feedwell, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2126.

    Article  Google Scholar 

  39. A. Perrot and D. Rangeard, Effects of mix design parameters on consolidation behaviour of fresh cement-based materials, Mater. Struct., 50(2017), No. 2, art. No. 117.

  40. Y.L. Ji, L. Pel, and Z.P. Sun, The microstructure development during bleeding of cement paste: An NMR study, Cem. Concr. Res., 125(2019), art. No. 105866.

  41. L. Cui and M. Fall, Numerical simulation of consolidation behavior of large hydrating fill mass, Int. J. Concr. Struct. Mater., 14(2020), No. 1, p. 23.

    Article  CAS  Google Scholar 

  42. H. Yazıcı, E. Deniz, and B. Baradan, The effect of autoclave pressure, temperature and duration time on mechanical properties of reactive powder concrete, Constr. Build. Mater., 42(2013), p. 53.

    Article  Google Scholar 

  43. E.A.H. Alwesabi, B.H.A. Bakar, I.M.H. Alshaikh, A.M. Zeyad, A. Altheeb, and H. Alghamdi, Experimental investigation on fracture characteristics of plain and rubberized concrete containing hybrid steel-polypropylene fiber, Structures, 33(2021), p. 4421.

    Article  Google Scholar 

  44. S.F. Lee and S. Jacobsen, Study of interfacial microstructure, fracture energy, compressive energy and debonding load of steel fiber-reinforced mortar, Mater. Struct., 44(2011), No. 8, p. 1451.

    Article  CAS  Google Scholar 

  45. R.B. Jewell, Influence of Calcium Sulfoaluminate Cement on the Pullout Performance of Reinforcing Fibers: An Evaluation of the Micro-mechanical Behavior [Dissertation], University of Kentucky, Lexington, Kentucky, 2015.

    Google Scholar 

  46. Y. Zhang, J.W. Ju, Q. Chen, Z.G. Yan, H.H. Zhu, and Z.W. Jiang, Characterizing and analyzing the residual interfacial behavior of steel fibers embedded into cement-based matrices after exposure to high temperatures, Composites Part B, 191(2020), art. No. 107933.

  47. M. Helmi, M.R. Hall, L.A. Stevens, and S.P. Rigby, Effects of high-pressure/temperature curing on reactive powder concrete microstructure formation, Constr. Build. Mater., 105(2016), p. 554.

    Article  CAS  Google Scholar 

  48. G. Ye, P. Lura, and K. van Breugel, Modelling of water permeability in cementitious materials, Mater. Struct., 39(2006), No. 9, p. 877.

    Article  CAS  Google Scholar 

  49. Y. Wang, A.X. Wu, Z.E. Ruan, et al., Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1430.

    Article  Google Scholar 

  50. A. Ghirian and M. Fall, Strength evolution and deformation behaviour of cemented paste backfill at early ages: Effect of curing stress, filling strategy and drainage, Int. J. Min. Sci. Technol., 26(2016), No. 5, p. 809.

    Article  CAS  Google Scholar 

  51. S. Chakilam and L. Cui, Effect of polypropylene fiber content and fiber length on the saturated hydraulic conductivity of hydrating cemented paste backfill, Constr. Build. Mater., 262(2020), art. No. 120854.

  52. L. Festugato, A. Fourie, and N.C. Consoli, Cyclic shear response of fibre-reinforced cemented paste backfill, Geotech. Lett., 3(2013), No. 1, p. 5.

    Article  Google Scholar 

  53. H.J. Yim, J.H. Kim, H.G. Kwak, and J.K. Kim, Evaluation of internal bleeding in concrete using a self-weight bleeding test, Cem. Concr. Res., 53(2013), p. 18.

    Article  CAS  Google Scholar 

  54. E.M. Jaouhar and L. Li, Effect of drainage and consolidation on the pore water pressures and total stresses within backfilled stopes and on barricades, Adv. Civ. Eng., 2019(2019), art. No. 1802130.

  55. K.R. Kumar, G. Shyamala, and A. Adesina, Structural performance of corroded reinforced concrete beams made with fiber-reinforced self-compacting concrete, Structures, 32(2021), p. 1145.

    Article  Google Scholar 

  56. N.F. Liu, L.A. Cui, and Y. Wang, Analytical assessment of internal stress in cemented paste backfill, Adv. Mater. Sci. Eng., 2020(2020), art. No. 6666548.

  57. L.A. Cui and M. Fall, Modeling of self-desiccation in a cemented backfill structure, Int. J. Numer. Anal. Methods Geomech., 42(2018), No. 3, p. 558.

    Article  CAS  Google Scholar 

  58. N. Lu, Generalized soil water retention equation for adsorption and capillarity, J. Geotech. Geoenviron. Eng., 142(2016), No. 10, art. No. 04016051.

  59. P. Simms and M. Grabinsky, Direct measurement of matric suction in triaxial tests on early-age cemented paste backfill, Can. Geotech. J., 46(2009), No. 1, p. 93.

    Article  Google Scholar 

  60. M.T. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44(1980), No. 5, p. 892.

    Article  Google Scholar 

  61. Y.S. Yao, J.J. Ni, and J. Li, Stress-dependent water retention of granite residual soil and its implications for ground settlement, Comput. Geotech., 129(2021), art. No. 103835.

  62. D.G. Fredlund and A.Q. Xing, Equations for the soil-water characteristic curve, Can. Geotech. J., 31(1994), No. 4, p. 521.

    Article  Google Scholar 

  63. S.W. Webb, A simple extension of two-phase characteristic curves to include the dry region, Water Resour. Res., 36(2000), No. 6, p. 1425.

    Article  Google Scholar 

  64. P.J. Ross, J. Williams, and K.L. Bristow, Equation for extending water-retention curves to dryness, Soil Sci. Soc. Am. J., 55(1991), No. 4, p. 923.

    Article  Google Scholar 

  65. R.G. Gao, K.P. Zhou, W. Liu, and Q.F. Ren, Correlation between the pore structure and water retention of cemented paste backfill using centrifugal and nuclear magnetic resonance methods, Minerals, 10(2020), No. 7, art. No. 610.

  66. I.L.S. Libos, L. Cui, and X.R. Liu, Effect of curing temperature on time-dependent shear behavior and properties of polypropylene fiber-reinforced cemented paste backfill, Constr. Build. Mater., 311(2021), art. No. 125302.

  67. I.L.S. Libos and L. Cui, Effects of curing time, cement content, and saturation state on mode-I fracture toughness of cemented paste backfill, Eng. Fract. Mech., 235(2020), art. No. 107174.

  68. L.C. Jiang, C. Yang, and H.Z. Jiao, Ultimately exposed roof area prediction of bauxite deposit goaf based on macro joint damage, Int. J. Min. Sci. Technol., 30(2020), No. 5, p. 699.

    Article  Google Scholar 

  69. S. Shiozawa and G.S. Campbell, Soil thermal conductivity, Remote Sens. Rev., 5(1990), No. 1, p. 301.

    Article  Google Scholar 

  70. A.G. Leach, The thermal conductivity of foams. I. Models for heat conduction, J. Phys. D: Appl. Phys., 26(1993), No. 5, p. 733.

    Article  CAS  Google Scholar 

  71. A.S. Judge, The Thermal Regime of the Mackenzie Valley: Observations of the Natural State, Environmental-Social Committee, Northern Pipelines, Task Force on Northern Oil Development, Ottawa, 1973.

    Google Scholar 

  72. W. Woodside and J.H. Messmer, Thermal conductivity of porous media. I. Unconsolidated sands, J. Appl. Phys., 32(1961), No. 9, p. 1688.

    Article  Google Scholar 

  73. V.R. Tarnawski and W.H. Leong, Advanced geometric mean model for predicting thermal conductivity of unsaturated soils, Int. J. Thermophys., 37(2016), No. 2, art. No. 18.

  74. S. Lu, T.S. Ren, Y.S. Gong, and R. Horton, An improved model for predicting soil thermal conductivity from water content at room temperature, Soil Sci. Soc. Am. J., 71(2007), No. 1, p. 8.

    Article  CAS  Google Scholar 

  75. S.X. Chen, Thermal conductivity of sands, Heat Mass Transfer, 44(2008), No. 10, p. 1241.

    Article  Google Scholar 

  76. Y.L. Lu, S. Lu, R. Horton, and T.S. Ren, An empirical model for estimating soil thermal conductivity from texture, water content, and bulk density, Soil Sci. Soc. Am. J., 78(2014), No. 6, p. 1859.

    Article  CAS  Google Scholar 

  77. A. Alrtimi, M. Rouainia, and S. Haigh, Thermal conductivity of a sandy soil, Appl. Therm. Eng., 106(2016), p. 551.

    Article  Google Scholar 

  78. S. He, Z. Li and E. H. Yang, Quantitative characterization of anisotropic properties of the interfacial transition zone (ITZ) between microfiber and cement paste, Cem. Concr. Res., 122(2019), p. 136.

    Article  CAS  Google Scholar 

  79. D. Belkharchouche and A. Chaker, Effects of moisture on thermal conductivity of the lightened construction material, Int. J. Hydrogen Energy, 41(2016), No. 17, p. 7119.

    Article  CAS  Google Scholar 

  80. W.J. Likos, Pore-scale model for thermal conductivity of unsaturated sand, Geotech. Geol. Eng., 33(2015), No. 2, p. 179.

    Article  Google Scholar 

  81. Q. Zhou and J.J. Beaudoin, Effect of applied hydrostatic stress on the hydration of Portland cement and C3S, Adv. Cem. Res., 15(2003), No. 1, p. 9.

    Article  CAS  Google Scholar 

  82. A.M. Neville, Creep of Concrete: Plain, Reinforced, and Prestressed, Elsevier, Amsterdam, 1971.

    Google Scholar 

  83. G. Goracci, M. Monasterio, H. Jansson, and S. Cerveny, Dynamics of nano-confined water in Portland cement - comparison with synthetic C-S-H gel and other silicate materials, Sci. Rep., 7(2017), art. No. 8258.

  84. T. Honorio, F. Masara, and F. Benboudjema, Heat capacity, isothermal compressibility, isosteric heat of adsorption and thermal expansion of water confined in C-S-H, Cement, 6(2021), art. No. 100015.

  85. S.H. Garofalini, T.S. Mahadevan, S.Y. Xu, and G.W. Scherer, Molecular mechanisms causing anomalously high thermal expansion of nanoconfined water, ChemPhysChem, 9(2008), No. 14, p. 1997.

    Article  CAS  Google Scholar 

  86. S. Mindess, J.F. Young, and D. Darwin, Concrete, 2nd ed., Prentice Hall, Upper Saddle River, 2003.

    Google Scholar 

  87. N. Zhang, X.B. Yu, A. Pradhan, and A.J. Puppala, Thermal conductivity of quartz sands by thermo-time domain reflectometry probe and model prediction, J. Mater. Civ. Eng., 27(2015), No. 12, art. No. 04015059.

  88. K.O. Sakyi-Bekoe, Assessment of the Coefficient of Thermal Expansion of Alabama Concrete [Dissertation], Auburn University, Auburn, Alabama, 2008.

    Google Scholar 

  89. N.I. Kömle, E.S. Hütter, and W.J. Feng, Thermal conductivity measurements of coarse-grained gravel materials using a hollow cylindrical sensor, Acta Geotech., 5(2010), No. 4, p. 211.

    Article  Google Scholar 

  90. A.M. Neville and J.J. Brooks, Concrete Technology, Longman Scientific & Technical, Essex, 1991.

    Google Scholar 

  91. M.A. Kant, J. Ammann, E. Rossi, C. Madonna, D. Höser, and P. Rudolf von Rohr, Thermal properties of Central Aare granite for temperatures up to 500°C: Irreversible changes due to thermal crack formation, Geophys. Res. Lett., 44(2017), No. 2, p. 771.

    Article  Google Scholar 

  92. P.K. Mehta and P.J.M. Monteiro, Concrete: Microstructure, Properties, and Materials, 4th ed., McGraw Hill, New York, 2013, p. 114.

    Google Scholar 

  93. A.P.S. Selvadurai and S.M. Rezaei Niya, Effective thermal conductivity of an intact heterogeneous limestone, J. Rock Mech. Geotech. Eng., 12(2020), No. 4, p. 682.

    Article  Google Scholar 

  94. O.A. Balogun, A.A. Akinwande, A.A. Adediran, P.P. Ikubanni, S.A. Shittu, and O.S. Adesina, Experimental study on the properties of fired sand–2013;clay ceramic products for masonry applications, J. Mater. Civ. Eng., 33(2021), No. 2, art. No. 04020445.

  95. E.J. Sellevold and Ø. Bjøntegaard, Coefficient of thermal expansion of cement paste and concrete: Mechanisms of moisture interaction, Mater. Struct., 39(2006), No. 9, p. 809.

    Article  CAS  Google Scholar 

  96. Y.B. Du and Y. Ge, Multiphase model for predicting the thermal conductivity of cement paste and its applications, Materials, 14(2021), No. 16, art. No. 4525.

  97. M.J.A. Qomi, F.J. Ulm, and R.J.M. Pellenq, Physical origins of thermal properties of cement paste, Phys. Rev. Appl., 3(2015), No. 6, art. No. 064010.

  98. S. Ghabezloo, Micromechanics analysis of thermal expansion and thermal pressurization of a hardened cement paste, Cem. Concr. Res., 41(2011), No. 5, p. 520.

    Article  CAS  Google Scholar 

  99. H. Xu, Y. Zhao, S.C. Vogel, L.L. Daemen, and D.D. Hickmott, Anisotropic thermal expansion and hydrogen bonding behavior of portlandite: A high-temperature neutron diffraction study, J. Solid State Chem., 180(2007), No. 4, p. 1519.

    Article  CAS  Google Scholar 

  100. K.J. Krakowiak, R.G. Nannapaneni, A. Moshiri, et al., Engineering of high specific strength and low thermal conductivity cementitious composites with hollow glass microspheres for high-temperature high-pressure applications, Cem. Concr. Compos., 108(2020), art. No. 103514.

  101. D. Tripathi, Practical Guide to Polypropylene, RAPRA Technology LTD., Shrewsbury, Shropshire, 2002.

    Google Scholar 

  102. J.E. Mark, Polymer Data Handbook, 2nd ed., Oxford University Press, New York, 2009.

    Google Scholar 

  103. T. Kashiwagi, E. Grulke, J. Hilding, et al., Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites, Polymer, 45(2004), No. 12, p. 4227.

    Article  CAS  Google Scholar 

  104. J. Stolz, Y. Boluk, and V. Bindiganavile, Mechanical, thermal and acoustic properties of cellular alkali activated fly ash concrete, Cem. Concr. Compos., 94(2018), p. 24.

    Article  CAS  Google Scholar 

  105. Y.H. Wang, Study on High Temperature Behaviours of FRHPC Pipe Members [Dissertation], Dalian University of Technology, Dalian, 2008.

    Google Scholar 

  106. Y. Zhang, J.W. Ju, H.H. Zhu, Q.H. Guo, and Z.G. Yan, Micromechanics based multi-level model for predicting the coefficients of thermal expansion of hybrid fiber reinforced concrete, Constr. Build. Mater., 190(2018), p. 948.

    Article  CAS  Google Scholar 

  107. H.G. Noh, H.C. Kang, M.H. Kim, and H.S. Park, Estimation model for effective thermal conductivity of reinforced concrete containing multiple round rebars, Int. J. Concr. Struct. Mater., 12(2018), No. 1, art. No. 65.

  108. T. Hassan, H. Jamshaid, R. Mishra, et al., Acoustic, mechanical and thermal properties of green composites reinforced with natural fibers waste, Polymers, 12(2020), No. 3, art. No. 654.

  109. R. Stapulionienė, S. Vaitkus, S. Vėjelis, and A. Sankauskaitė, Investigation of thermal conductivity of natural fibres processed by different mechanical methods, Int. J. Precis. Eng. Manuf., 17(2016), No. 10, p. 1371.

    Article  Google Scholar 

  110. J.J. Valenza and G.W. Scherer, Evidence of anomalous thermal expansion of water in cement paste, Cem. Concr. Res., 35(2005), No. 1, p. 57.

    Article  CAS  Google Scholar 

  111. Z.X. Zhao, C.Z. Sun, and R.F. Zhou, Thermal conductivity of confined-water in graphene nanochannels, Int. J. Heat Mass Transfer, 152(2020), art. No. 119502.

  112. X.R. Wang, H. Shao, J. Hesser, C.L. Zhang, W.Q. Wang, and O. Kolditz, Numerical analysis of thermal impact on hydromechanical properties of clay, J. Rock Mech. Geotech. Eng., 6(2014), No. 5, p. 405.

    Article  Google Scholar 

  113. X.Y. Pang and C. Meyer, Modeling cement hydration by connecting a nucleation and growth mechanism with a diffusion mechanism. Part II: Portland cement paste hydration, Sci. Eng. Compos. Mater., 23(2016), No. 6, p. 605.

    Article  CAS  Google Scholar 

  114. R. Snellings, A. Machner, G. Bolte, et al., Hydration kinetics of ternary slag-limestone cements: Impact of water to binder ratio and curing temperature, Cem. Concr. Res., 151(2022), art. No. 106647.

  115. D.P. Bentz, Three-dimensional computer simulation of Portland cement hydration and microstructure development, J. Am. Ceram. Soc., 80(1997), No. 1, p. 3.

    Article  CAS  Google Scholar 

  116. J.W. Bullard, A three-dimensional microstructural model of reactions and transport in aqueous mineral systems, Modell. Simul. Mater. Sci. Eng., 15(2007), No. 7, p. 711.

    Article  CAS  Google Scholar 

  117. K. van Breugel, Simulation of Hydration and Formation of Structure in Hardening Cement-based Materials [Dissertation], Delft University of Technology, Delft, 1991.

    Google Scholar 

  118. H.M. Jennings and S.K. Johnson, Simulation of microstructure development during the hydration of a cement compound, J. Am. Ceram. Soc., 69(1986), No. 11, p. 790.

    Article  CAS  Google Scholar 

  119. A. K. Schindler and K. J. Folliard, Heat of hydration models for cementitious materials, ACI Mater. J., 102(2005), No. 1, p. 24.

    CAS  Google Scholar 

  120. H. Nakamura, S. Hamada, T. Tanimoto and A. Miyamoto, Estimation of thermal crack resistance for mass concrete structures with uncertain material properties, ACI Struct. J., 96(1999), No. 4, p. 509.

    Google Scholar 

  121. M. Cervera, R. Faria, J. Oliver, and T. Prato, Numerical modelling of concrete curing, regarding hydration and temperature phenomena, Comput. Struct., 80(2002), No. 18–19, p. 1511.

    Article  Google Scholar 

  122. T. Knudsen, Modeling hydration of Portland cement-the effect of particle size distribution, [in] Proceedings of the Engineering Foundation Conference on Characterization and Performance Prediction of Cement and Concrete, New Hampshire, 1982, p. 125.

  123. D.P. Bentz, Influence of water-to-cement ratio on hydration kinetics: Simple models based on spatial considerations, Cem. Concr. Res., 36(2006), No. 2, p. 238.

    Article  CAS  Google Scholar 

  124. X. Pang, C. Meyer, R. Darbe and G. P. Funkhouser, Modeling the effect of curing temperature and pressure on cement hydration kinetics, ACI Mater. J., 110(2013), No. 2, p. 137.

    CAS  Google Scholar 

  125. L.J. Sun, X.Y. Pang, Y.H. Bu, and C.W. Wang, Experimental study of the effect of curing temperature and pressure on the property evolution of oil well cement, [in] Proceedings of the 55th U.S. Rock Mechanics/Geomechanics Symposium, Virtual Conference, 2021, p. 1397.

  126. G.W. Scherer, G.P. Funkhouser, and S. Peethamparan, Effect of pressure on early hydration of class H and white cement, Cem. Concr. Res., 40(2010), No. 6, p. 845.

    Article  CAS  Google Scholar 

  127. G. Quercia, H.J.H. Brouwers, A. Garnier, and K. Luke, Influence of olivine nano-silica on hydration and performance of oil-well cement slurries, Mater. Des., 96(2016), p. 162.

    Article  CAS  Google Scholar 

  128. Q.S. Chen, S.Y. Sun, Y.K. Liu, C.C. Qi, H.B. Zhou, and Q.L. Zhang, Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1440.

    Article  CAS  Google Scholar 

  129. D. Fan and S.T. Yang, Mechanical properties of C-S-H globules and interfaces by molecular dynamics simulation, Constr. Build Mater., 176(2018), p. 573.

    Article  CAS  Google Scholar 

  130. V. Baroghel-Bouny, P. Mounanga, A. Khelidj, A. Loukili, and N. Rafaï, Autogenous deformations of cement pastes: Part II. W/C effects, micro-macro correlations, and threshold values, Cem. Concr. Res., 36(2006), No. 1, p. 123.

    Article  CAS  Google Scholar 

  131. M. Szeląg, Development of cracking patterns in modified cement matrix with microsilica, Materials, 11(2018), No. 10, art. No. 1928.

  132. C.C. Qi, X.H. Xu, and Q.S. Chen, Hydration reactivity difference between dicalcium silicate and tricalcium silicate revealed from structural and Bader charge analysis, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 335.

    Article  CAS  Google Scholar 

  133. P.D. Tennis and H.M. Jennings, A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes, Cem. Concr. Res., 30(2000), No. 6, p. 855.

    Article  CAS  Google Scholar 

  134. M. Vandamme, F.J. Ulm, and P. Fonollosa, Nanogranular packing of C-S-H at substochiometric conditions, Cem. Concr. Res., 40(2010), No. 1, p. 14.

    Article  CAS  Google Scholar 

  135. A. Nonat, The structure and stoichiometry of C-S-H, Cem. Concr. Res., 34(2004), No. 9, p. 1521.

    Article  CAS  Google Scholar 

  136. H.M. Jennings, J.J. Thomas, J.S. Gevrenov, G. Constantinides, and F.J. Ulm, A multi-technique investigation of the nano-porosity of cement paste, Cem. Concr. Res., 37(2007), No. 3, p. 329.

    Article  CAS  Google Scholar 

  137. I.G. Richardson, Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume, Cem. Concr. Res., 34(2004), No. 9, p. 1733.

    Article  CAS  Google Scholar 

  138. I.G. Richardson, The nature of the hydration products in hardened cement pastes, Cem. Concr. Compos., 22(2000), No. 2, p. 97.

    Article  CAS  Google Scholar 

  139. G. Constantinides and F.J. Ulm, The nanogranular nature of C-S-H, J. Mech. Phys. Solids, 55(2007), No. 1, p. 64.

    Article  CAS  Google Scholar 

  140. P. Mondal, S.P. Shah, L.D. Marks, and J.J. Gaitero, Comparative study of the effects of microsilica and nanosilica in concrete, Transp. Res. Rec., 2141(2010), No. 1, p. 6.

    Article  CAS  Google Scholar 

  141. J.J. Kim, M.K. Rahman, and M.M.R. Taha, Examining microstructural composition of hardened cement paste cured under high temperature and pressure using nanoindentation and 29Si MAS NMR, Appl. Nanosci., 2(2012), No. 4, p. 445.

    Article  CAS  Google Scholar 

  142. S. Yashiro, Application of particle simulation methods to composite materials: A review, Adv. Compos. Mater., 26(2017), No. 1, p. 1.

    Article  Google Scholar 

  143. A. Ferrari, J. Jimenez-Martinez, T.L. Borgne, Y. Méheust, and I. Lunati, Challenges in modeling unstable two-phase flow experiments in porous micromodels, Water Resour. Res., 51(2015), No. 3, p. 1381.

    Article  Google Scholar 

  144. X. Sun, X. Zhang, X. Jiao, J. Ma, X.Z. Liu, H. Yang, et al., Injectable bioactive polymethyl methacrylate-hydrogel hybrid bone cement loaded with BMP-2 to improve osteogenesis for percutaneous vertebroplasty and kyphoplasty, Bio-Des. Manuf., 5(2022), No. 2, p. 318.

    Article  CAS  Google Scholar 

  145. L.D. Carlos and F. Palacio, Thermometry at the Nanoscale: Techniques and Selected Applications, Royal Society of Chemistry, London, 2015.

    Book  Google Scholar 

  146. M. Voltolini, M.C. Dalconi, G. Artioli, et al., Understanding cement hydration at the microscale: New opportunities from ‘pencil-beam’ synchrotron X-ray diffraction tomography, J. Appl. Cryst., 46(2013), No. 1, p. 142.

    Article  CAS  Google Scholar 

  147. M. Sun, G.Q. Geng, D.B. Xin, and C.Y. Zou, Molecular quantification of the decelerated dissolution of tri-calcium silicate (C3S) due to surface adsorption, Cem. Concr. Res., 152(2022), art. No. 106682.

  148. A.J.N. MacLeod, F.G. Collins, and W.H. Duan, Effects of carbon nanotubes on the early-age hydration kinetics of Portland cement using isothermal calorimetry, Cem. Concr. Compos., 119(2021), art. No. 103994.

  149. J.H. Song and T. Belytschko, Multiscale aggregating discontinuities method for micro-macro failure of composites, Composites Part B, 40(2009), No. 6, p. 417.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and Lakehead University for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Cui.

Additional information

Conflict of Interest

The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holmberg, B., Cui, L. Multiphysics processes in the interfacial transition zone of fiber-reinforced cementitious composites under induced curing pressure and implications for mine backfill materials: A critical review. Int J Miner Metall Mater 30, 1474–1489 (2023). https://doi.org/10.1007/s12613-023-2640-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2640-7

Keywords

Navigation