Skip to main content
Log in

Constructing BaTiO3/TiO2@polypyrrole composites with hollow multishelled structure for enhanced electromagnetic wave absorbing properties

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

BaTiO3/TiO2@polypyrrole (PPy) composites with hollow multishelled structure (HoMS) were constructed to enhance the electromagnetic wave absorbing properties of BaTiO3-based absorbing material. BaTiO3/TiO2 HoMSs were prepared by hydrothermal crystallization using TiO2 HoMSs as template. Then, FeCl3 was introduced to initiate the oxidative polymerization of pyrrole monomer, forming BaTiO3/TiO2@PPy HoMSs successfully. The electromagnetic wave absorbing properties of BaTiO3/TiO2 HoMSs and BaTiO3/TiO2@PPy HoMSs with different shell number were investigated using a vector network analyzer. The results indicate that BaTiO3/TiO2@PPy HoMSs exhibit improved microwave absorption compared with BaTiO3/TiO2 HoMSs. In particular, tripled-shelled BaTiO3/TiO2@PPy HoMS has the most excellent absorbing performance. The best reflection loss can reach up to −21.80 dB at 13.34 GHz with a corresponding absorber thickness of only 1.3 mm, and the qualified absorption bandwidth of tripled-shelled BaTiO3/TiO2@PPy HoMS is up to 4.2 GHz. This work paves a new way for the development of high-performance composite microwave absorbing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Shahzad, M. Alhabeb, C.B. Hatter, et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science, 353(2016), No. 6304, p. 1137.

    Article  CAS  Google Scholar 

  2. H. Hu, G.D. Niu, Z.P. Zheng, L. Xu, L.Y. Liu, and J. Tang, Perovskite semiconductors for ionizing radiation detection, EcoMat, 4(2022), No. 6, art. No. e12258.

  3. Y. Li, X.F. Liu, X.Y. Nie, et al., Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material, Adv. Funct. Mater., 29(2019), No. 10, art. No. 1807624.

  4. X.T. Chen, M. Zhou, Y. Zhao, et al., Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth, Green Chem., 24(2022), No. 13, p. 5280.

    Article  CAS  Google Scholar 

  5. F. Wang, W.H. Gu, J.B. Chen, et al., The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability, Nano Res., 15(2022), No. 4, p. 3720.

    Article  CAS  Google Scholar 

  6. X.P. Li, Z.M. Deng, Y. Li, et al., Controllable synthesis of hollow microspheres with Fe@carbon dual-shells for broad bandwidth microwave absorption, Carbon, 147(2019), p. 172.

    Article  CAS  Google Scholar 

  7. X. Qiu, L.X. Wang, H.L. Zhu, Y.K. Guan, and Q.T. Zhang, Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon, Nanoscale, 9(2017), No. 22, p. 7408.

    Article  CAS  Google Scholar 

  8. L.R. Cui, X.J. Han, F.Y. Wang, H.H. Zhao, and Y.C. Du, A review on recent advances in carbon-based dielectric system for microwave absorption, J. Mater. Sci., 56(2021), No. 18, p. 10782.

    Article  CAS  Google Scholar 

  9. L.X. Gai, H.H. Zhao, F.Y. Wang, et al., Advances in core-shell engineering of carbon-based composites for electromagnetic wave absorption, Nano Res., 15(2022), No. 10, p. 9410.

    Article  Google Scholar 

  10. L.R. Cui, C.H. Tian, L.L. Tang, et al., Space-confined synthesis of core-shell BaTiO3@carbon microspheres as a high-performance binary dielectric system for microwave absorption, ACS Appl. Mater. Interfaces, 11(2019), No. 34, p. 31182.

    Article  CAS  Google Scholar 

  11. L. Wang, X. Li, Q.Q. Li, Y.H. Zhao, and R.C. Che, Enhanced polarization from hollow cube-like ZnSnO3 wrapped by multi-walled carbon nanotubes: As a lightweight and high-performance microwave absorber, ACS Appl. Mater. Interfaces, 10(2018), No. 26, p. 22602.

    Article  CAS  Google Scholar 

  12. Z.G. Mu, G.K. Wei, H. Zhang, et al., The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature, Nano Res., 15(2022), No. 8, p. 7731.

    Article  CAS  Google Scholar 

  13. D. Mao, J.W. Wan, J.Y. Wang, and D. Wang, Sequential templating approach: A groundbreaking strategy to create hollow multishelled structures, Adv. Mater., 31(2019), No. 38, art. No. 1802874.

  14. Y.Z. Wei, N.L. Yang, K.K. Huang, et al., Steering hollow multishelled structures in photocatalysis: Optimizing surface and mass transport, Adv. Mater., 32(2020), No. 44, art. No. 2002556.

  15. Z. Zhang, D. Mao, M. Yang, and R.B. Yu, Application of hollow multi-shelled structures in electromagnetic wave field, Chem. J. Chin. Univ., 42(2021), No. 5, p. 1395.

    Google Scholar 

  16. L.J. Yang, H.L. Lv, M. Li, Y. zhang, J.C. Liu, and Z.H. Yang, Multiple polarization effect of shell evolution on hierarchical hollow C@MnO2 composites and their wideband electromagnetic wave absorption properties, Chem. Eng. J., 392(2020), art. No. 123666.

  17. J.W. Liu, J. Cheng, R.C. Che, J.J. Xu, M.M. Liu, and Z.W. Liu, Double-shelled yolk-shell microspheres with Fe3O4 cores and SnO2 double shells as high-performance microwave absorbers, J. Phys. Chem. C, 117(2013), No. 1, p. 489.

    Article  CAS  Google Scholar 

  18. J.Q. Tao, J.T. Zhou, Z.J. Yao, et al., Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties, Carbon, 172(2021), p. 542.

    Article  CAS  Google Scholar 

  19. G. Ahmad, M.B. Dickerson, Y. Cai, et al., Rapid bioenabled formation of ferroelectric BaTiO3 at room temperature from an aqueous salt solution at near neutral pH, J. Am. Chem. Soc., 130(2008), No. 1, p. 4.

    Article  CAS  Google Scholar 

  20. F. Xia, J.W. Liu, D. Gu, P.F. Zhao, J. Zhang, and R.C. Che, Microwave absorption enhancement and electron microscopy characterization of BaTiO3 nano-torus, Nanoscale, 3(2011), No. 9, p. 3860.

    Article  CAS  Google Scholar 

  21. L.H. Tian, X.D. Yan, J.L. Xu, et al., Effect of hydrogenation on the microwave absorption properties of BaTiO3 nanoparticles, J. Mater. Chem. A, 3(2015), No. 23, p. 12550.

    Article  CAS  Google Scholar 

  22. Y.F. Zhu, Q.Q. Ni, and Y.Q. Fu, One-dimensional barium titanate coated multi-walled carbon nanotube heterostructures: Synthesis and electromagnetic absorption properties, RSC Adv., 5(2015), No. 5, p. 3748.

    Article  CAS  Google Scholar 

  23. S.P. Li, Y. Huang, N. Zhang, M. Zong, and P.B. Liu, Synthesis of polypyrrole decorated FeCo@SiO2 as a high-performance electromagnetic absorption material, J. Alloys Compd., 774(2019), p. 532.

    Article  CAS  Google Scholar 

  24. Z.C. Wu, D.G. Tan, K. Tian, et al., Facile preparation of core-shell Fe3O4@polypyrrole composites with superior electromagnetic wave absorption properties, J. Phys. Chem. C, 121(2017), No. 29, p. 15784.

    Article  CAS  Google Scholar 

  25. R. Pang, X.J. Hu, S.Y. Zhou, et al., Preparation of multi-shelled conductive polymer hollow microspheres by using Fe3O4 hollow spheres as sacrificial templates, Chem. Commun., 50(2014), No. 83, p. 12493.

    Article  CAS  Google Scholar 

  26. H. Ren, R.B. Yu, J.Y. Wang, et al., Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries, Nano Lett., 14(2014), No. 11, p. 6679.

    Article  CAS  Google Scholar 

  27. S. Goel, A. Tyagi, A. Garg, et al., Microwave absorption study of composites based on CQD@BaTiO3 core shell and BaFe12O19 nanoparticles, J. Alloys Compd., 855(2021), art. No. 157411.

  28. N.V. Blinova, J. Stejskal, M. Trchová, J. Prokeš, and M. Omastová, Polyaniline and polypyrrole: A comparative study of the preparation, Eur. Polym. J., 43(2007), No. 6, p. 2331.

    Article  CAS  Google Scholar 

  29. Y.F. Zhu, L. Zhang, T. Natsuki, Y.Q. Fu, and Q.Q. Ni, Facile synthesis of BaTiO3 nanotubes and their microwave absorption properties, ACS Appl. Mater. Interfaces, 4(2012), No. 4, p. 2101.

    Article  CAS  Google Scholar 

  30. Y.K. Liu, Y.J. Feng, X.W. Wu, and X.G. Han, Microwave absorption properties of La doped barium titanate in X-band, J. Alloys Compd., 472(2009), No. 1–2, p. 441.

    Article  CAS  Google Scholar 

  31. T.W. Wang, Z.W. Yin, Y.H. Guo, et al., Highly selective photocatalytic conversion of glucose on holo-symmetrically spherical three-dimensionally ordered macroporous heterojunction photonic crystal, CCS Chem., (2022). DOI: https://doi.org/10.31635/ccschem.022.202202213

  32. Y.F. Zhu, Y.Q. Fu, T. Natsuki, and Q.Q. Ni, Fabrication and microwave absorption properties of BaTiO3 nanotube/polyaniline hybrid nanomaterials, Polym. Compos., 34(2013), No. 2, p. 265.

    Article  CAS  Google Scholar 

  33. P.B. Liu, S. Gao, Y. Wang, Y. Huang, Y. Wang, and J.H. Luo, Core-shell CoNi@graphitic carbon decorated on B, N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation, ACS Appl. Mater. Interfaces, 11(2019), No. 28, p. 25624.

    Article  CAS  Google Scholar 

  34. B. Zhao, W.Y. Zhao, G. Shao, B.B. Fan, and R. Zhang, Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybbrids, Dalton Trans., 44(2015), No. 36, p. 15984.

    Article  CAS  Google Scholar 

  35. H. Li, S.S. Bao, Y.M. Li, et al., Optimizing the electromagnetic wave absorption performances of designed Co3Fe7@C yolk-shell structures, ACS Appl. Mater. Interfaces, 10(2018), No. 34, p. 28839.

    Article  CAS  Google Scholar 

  36. M.M. Lu, W.Q. Cao, H.L. Shi, et al., Multi-wall carbon nanotubes decorated with ZnO nanocrystals: Mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature, J. Mater. Chem. A, 2(2014), No. 27, p. 10540.

    Article  CAS  Google Scholar 

  37. Z.H. Yang, Y. Zhang, M. Li, et al., Surface architecture of Ni-based metal organic framework hollow spheres for adjustable microwave absorption, ACS Appl. Nano Mater., 2(2019), No. 12, p. 7888.

    Article  CAS  Google Scholar 

  38. S.Y. Wang, S.S. Peng, S.T. Zhong, and W. Jiang, Construction of SnO2/Co3Sn2@C and SnO2/Co3Sn2@air@C hierarchical heterostructures for efficient electromagnetic wave absorption, J. Mater. Chem. C, 6(2018), No. 35, p. 9465.

    Article  CAS  Google Scholar 

  39. Y. Qiu, Y. Lin, H.B. Yang, L. Wang, M.Q. Wang, and B. Wen, Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123207.

  40. Z.N. Li, X.J. Han, Y. Ma, et al., MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance, ACS Sustainable Chem. Eng., 6(2018), No. 7, p. 8904.

    Article  CAS  Google Scholar 

  41. G.S. Wen, X.C. Zhao, Y. Liu, H. Zhang, and C. Wang, Facile synthesis of RGO/Co@Fe@Cu hollow nanospheres with efficient broadband electromagnetic wave absorption, Chem. Eng. J., 372(2019), p. 1.

    Article  CAS  Google Scholar 

  42. S.H. Choi, J.H. Oh, and T. Ko, Preparation and characteristics of Fe3O4-encapsulated BaTiO3 powder by ultrasound-enhanced ferrite plating, J. Magn. Magn. Mater., 272–276(2004), p. 2233.

    Article  Google Scholar 

  43. G.M. Shi, Y.F. Li, L. Ai, and F.N. Shi, Two step synthesis and enhanced microwave absorption properties of polycrystalline BaTiO3 coated Ni nanocomposites, J. Alloys Compd., 680(2016), p. 735.

    Article  CAS  Google Scholar 

  44. J. Ran, M.J. Guo, L. Zhong, and H.Q. Fu, In situ growth of BaTiO3 nanotube on the surface of reduced graphene oxide: A lightweight electromagnetic absorber, J. Alloys Compd., 773(2019), p. 423.

    Article  CAS  Google Scholar 

  45. X. Huang, Z.R. Chen, L.F. Tong, M.N. Feng, Z.J. Pu, and X.B. Liu, Preparation and microwave absorption properties of BaTiO3@MWCNTs core/shell heterostructure, Mater. Lett., 111(2013), p. 24.

    Article  CAS  Google Scholar 

  46. Y. Zuo, J.H. Luo, M.L. Cheng, K. Zhang, and R.L. Dong, Synthesis, characterization and enhanced electromagnetic properties of BaTiO3/NiFe2O4-decorated reduced graphene oxide nanosheets, J. Alloys Compd., 744(2018), p. 310.

    Article  CAS  Google Scholar 

  47. Y. Huang, J.D. Ji, Y. Chen, et al., Broadband microwave absorption of Fe3O4−BaTiO3 composites enhanced by interfacial polarization and impedance matching, Composites Part B, 163(2019), p. 598.

    Article  CAS  Google Scholar 

  48. Z. Peng, W. Jiang, Y.P. Wang, and S.T. Zhong, Synthesis and microwave absorption properties of Fe3O4@BaTiO3/reduced graphene oxide nanocomposites, J. Mater. Sci. Mater. Electron., 27(2016), No. 2, p. 1304.

    Article  CAS  Google Scholar 

  49. L.J. Yu, Y.F. Zhu, C. Qian, Q. Fu, Y.Z. Zhao, and Y.Q. Fu, Nanostructured barium titanate/carbon nanotubes incorporated polyaniline as synergistic electromagnetic wave absorbers, J. Nanomater., 2016(2016), art. No. 6032307.

  50. H.L. Lv, H.Q. Zhang, J. Zhao, G.B. Ji, and Y.W. Du, Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures, Nano Res., 9(2016), No. 6, p. 1813.

    Article  CAS  Google Scholar 

  51. Y.H. Wang, X.J. Han, P. Xu, et al., Synthesis of pomegranatelike Mo2C@C nanospheres for highly efficient microwave absorption, Chem. Eng. J., 372(2019), p. 312.

    Article  CAS  Google Scholar 

  52. W.Y. Dai, F. Chen, H. Luo, et al., Synthesis of yolk-shell structured carbonyl iron@void@nitrogen doped carbon for enhanced microwave absorption performance, J. Alloys Compd., 812(2020), art. No. 152083.

  53. J. Ouyang, Z.L. He, Y. Zhang, H.M. Yang, and Q.H. Zhao, Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability, ACS Appl. Mater. Interfaces, 11(2019), No. 42, p. 39304.

    Article  CAS  Google Scholar 

  54. B. Qu, C.L. Zhu, C.Y. Li, X.T. Zhang, and Y.J. Chen, Coupling hollow Fe3O4−Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material, ACS Appl. Mater. Interfaces, 8(2016), No. 6, p. 3730.

    Article  CAS  Google Scholar 

  55. B. Zhao, X.Q. Guo, W.Y. Zhao, et al., Facile synthesis of yolk-shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties, Nano Res., 10(2017), No. 1, p. 331.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51972305, 21820 102002, 21931012, 51932001, and 51872024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Yang, Ranbo Yu or Dan Wang.

Additional information

Conflict of Interest

All authors have no financial/commercial conflicts of interest.

Supplementary Information

12613_2022_2556_MOESM1_ESM.docx

Constructing BaTiO3/TiO2@polypyrrole composites with hollow multishelled structure for enhanced electromagnetic wave absorbing properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, D., Zhang, Z., Yang, M. et al. Constructing BaTiO3/TiO2@polypyrrole composites with hollow multishelled structure for enhanced electromagnetic wave absorbing properties. Int J Miner Metall Mater 30, 581–590 (2023). https://doi.org/10.1007/s12613-022-2556-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2556-7

Keywords

Navigation