Skip to main content

Advertisement

Log in

Decarbonization options of the iron and steelmaking industry based on a three-dimensional analysis

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Decarbonization is a critical issue for peaking CO2 emissions of energy-intensive industries, such as the iron and steel industry. The decarbonization options of China’s ironmaking and steelmaking sector were discussed based on a systematic three-dimensional low-carbon analysis from the aspects of resource utilization (Y), energy utilization (Q), and energy cleanliness which is evaluated by a process general emission factor (PGEF) on all the related processes, including the current blast furnace (BF)—basic oxygen furnace (BOF) integrated process and the specific sub-processes, as well as the electric arc furnace (EAF) process, typical direct reduction (DR) process, and smelting reduction (SR) process. The study indicates that the three-dimensional aspects, particularly the energy structure, should be comprehensively considered to quantitatively evaluate the decarbonization road map based on novel technologies or processes. Promoting scrap utilization (improvement of Y) and the substitution of carbon-based energy (improvement of PGEF) in particular is critical. In terms of process scale, promoting the development of the scrap-based EAF or DR—EAF process is highly encouraged because of their lower PGEF. The three-dimensional method is expected to extend to other processes or industries, such as the cement production and thermal electricity generation industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Wang, X. Lu, Y. Deng, et al., China’s CO2 peak before 2030 implied from characteristics and growth of cities, Nat. Sustainability, 2(2019), No. 8, p. 748.

    Article  Google Scholar 

  2. Z. Liu, D.B. Guan, S. Moore, H. Lee, J. Su, and Q. Zhang, Climate policy: Steps to China’s carbon peak, Nature, 522(2015), No. 7556, p. 279.

    Article  CAS  Google Scholar 

  3. D.B. Guan, Y.L. Shan, Z. Liu, and K.B. He, Performance assessment and outlook of China’s emission-trading scheme, Engineering, 2(2016), No. 4, p. 398.

    Article  Google Scholar 

  4. K. Daehn, R. Basuhi, J. Gregory, M. Berlinger, V. Somjit, and E.A. Olivetti, Innovations to decarbonize materials industries, Nat. Rev. Mater., 7(2022), No. 4, p. 275.

    Article  CAS  Google Scholar 

  5. D. Raabe, C.C. Tasan, and E.A. Olivetti, Strategies for improving the sustainability of structural metals, Nature, 575(2019), No. 7781, p. 64.

    Article  CAS  Google Scholar 

  6. World Steel Association, Steel Statistical Yearbook 2021, Brussels, Belgium, 2021 [February 2, 2022]. http://www.worldsteel.org

  7. Z.C. Guo and Z.X. Fu, Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China, Energy, 35(2010), No. 11, p. 4356.

    Article  Google Scholar 

  8. W.Q. Wu, Y.J. Li, T.Y. Zhu, and W.J. Cao, CO2 emission in iron and steel making industry and its reduction prospect, Chin. J. Process Eng., 13(2013), p. 175.

    CAS  Google Scholar 

  9. J.C. Brunke and M. Blesl, A plant-specific bottom-up approach for assessing the cost-effective energy conservation potential and its ability to compensate rising energy-related costs in the German iron and steel industry, Energy Policy, 67(2014), p. 431.

    Article  Google Scholar 

  10. N. Karali, T.F. Xu, and J. Sathaye, Reducing energy consumption and CO2 emissions by energy efficiency measures and international trading: A bottom-up modeling for the U.S. iron and steel sector, Appl. Energy, 120(2014), p. 133.

    Article  CAS  Google Scholar 

  11. L. Price, J. Sinton, E. Worrell, D. Phylipsen, H. Xiulian, and L. Ji, Energy use and carbon dioxide emissions from steel production in China, Energy, 27(2002), No. 5, p. 429.

    Article  CAS  Google Scholar 

  12. S. Siitonen, M. Tuomaala, and P. Ahtila, Variables affecting energy efficiency and CO2 emissions in the steel industry, Energy Policy, 38(2010), No. 5, p. 2477.

    Article  CAS  Google Scholar 

  13. K. Tanaka, A comparison study of EU and Japan methods to assess CO2 emission reduction and energy saving in the iron and steel industry, Energy Policy, 51(2012), p. 578.

    Article  Google Scholar 

  14. X.L. Wang and B.Q. Lin, How to reduce CO2 emissions in China’s iron and steel industry, Renewable Sustainable Energy Rev., 57(2016), p. 1496.

    Article  CAS  Google Scholar 

  15. X.C. Zhao, H. Bai, X. Lu, Q. Shi, and J.H. Han, A MILP model concerning the optimisation of penalty factors for the short-term distribution of byproduct gases produced in the iron and steel making process, Appl. Energy, 148(2015), p. 142.

    Article  CAS  Google Scholar 

  16. X.C. Zhao, H. Bai, Q. Shi, X. Lu, and Z.H. Zhang, Optimal scheduling of a byproduct gas system in a steel plant considering time-of-use electricity pricing, Appl. Energy, 195(2017), p. 100.

    Article  Google Scholar 

  17. H.M. Na, J.C. Sun, Z.Y. Qiu, et al., A novel evaluation method for energy efficiency of process industry—A case study of typical iron and steel manufacturing process, Energy, 233(2021), art. No. 121081.

  18. W.Q. Long, S.S. Wang, C.Y. Lu, et al., Quantitative assessment of energy conservation potential and environmental benefits of an iron and steel plant in China, J. Cleaner Prod., 273(2020), art. No. 123163.

  19. J.L. Suer, M. Traverso, and F. Ahrenhold, Carbon footprint of scenarios towards climate-neutral steel according to ISO 14067, J. Cleaner Prod., 318(2021), art. No. 128588.

  20. K.H. Ma, J.Y. Deng, G. Wang, Q. Zhou, and J. Xu, Utilization and impacts of hydrogen in the ironmaking processes: A review from lab-scale basics to industrial practices, Int. J. Hydrogen Energy, 46(2021), No. 52, p. 26646.

    Article  CAS  Google Scholar 

  21. J.C. Sun, H.M. Na, T.Y. Yan, et al., A comprehensive assessment on material, exergy and emission networks for the integrated iron and steel industry, Energy, 235(2021), art. No. 121429.

  22. X.Y. Zhang, K.X. Jiao, J.L. Zhang, and Z.Y. Guo, A review on low carbon emissions projects of steel industry in the World, J. Cleaner Prod., 306(2021), art. No. 127259.

  23. J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713.

    Article  CAS  Google Scholar 

  24. M. Fischedick, J. Marzinkowski, P. Winzer, and M. Weigel, Techno-economic evaluation of innovative steel production technologies, J. Cleaner Prod., 84(2014), p. 563.

    Article  CAS  Google Scholar 

  25. C.Q. Hu, X.W. Han, Z.H. Li, and C.X. Zhang, Comparison of CO2 emission between COREX and blast furnace iron-making system, J. Environ. Sci., 21(2009), p. S116.

    Article  Google Scholar 

  26. M.A. Quader, S. Ahmed, R.A.R. Ghazilla, S. Ahmed, and M. Dahari, A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing, Renewable Sustainable Energy Rev., 50(2015), p. 594.

    Article  CAS  Google Scholar 

  27. A. Hasanbeigi, M. Arens, and L. Price, Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: A technical review, Renewable Sustainable Energy Rev., 33(2014), p. 645.

    Article  CAS  Google Scholar 

  28. R. Zhu, B.C. Han, K. Dong, and G.S. Wei, A review of carbon dioxide disposal technology in the converter steelmaking process, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1421.

    Article  CAS  Google Scholar 

  29. V. Strezov, A. Evans, and T. Evans, Defining sustainability indicators of iron and steel production, J. Cleaner Prod., 51(2013), p. 66.

    Article  Google Scholar 

  30. S.H. Zhang, E. Worrell, W. Crijns-Graus, F. Wagner, and J. Cofala, Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry, Energy, 78(2014), p. 333.

    Article  CAS  Google Scholar 

  31. T. Ariyama and M. Sato, Optimization of ironmaking process for reducing CO2 emissions in the integrated steel works, ISIJ Int., 46(2006), No. 12, p. 1736.

    Article  CAS  Google Scholar 

  32. H. Bai, P. Liu, H.X. Li, L.H. Zhao, and D.Q. Cang, Analysis of carbon emission reduction of China’s integrated steelworks, [in] N.R. Neelameggham, C.K. Belt, M. Jolly, R.G. Reddy, and J.A. Yurko, eds., Energy Technology 2011: Carbon Dioxide and Other Greenhouse Gas Reduction Metallurgy and Waste Heat Recovery, John Wiley & Sons, Inc., Hoboken, 2011, p. 253.

    Chapter  Google Scholar 

  33. L.M. Germeshuizen and P.W.E. Blom, A techno-economic evaluation of the use of hydrogen in a steel production process, utilizing nuclear process heat, Int. J. Hydrogen Energy, 38(2013), No. 25, p. 10671.

    Article  CAS  Google Scholar 

  34. A.R. da Costa, D. Wagner, and F. Patisson, Modelling a new, low CO2 emissions, hydrogen steelmaking process, J. Cleaner Prod., 46(2013), p. 27.

    Article  Google Scholar 

  35. M.T. Johansson, Bio-synthetic natural gas as fuel in steel industry reheating furnaces — A case study of economic performance and effects on global CO2 emissions, Energy, 57(2013), p. 699.

    Article  CAS  Google Scholar 

  36. D.B. Guo, L.D. Zhu, S. Guo, et al., Direct reduction of oxidized iron ore pellets using biomass syngas as the reducer, Fuel Process. Technol., 148(2016), p. 276.

    Article  CAS  Google Scholar 

  37. H. Helle, M. Helle, H. Saxén, and F. Pettersson, Mathematical optimization of ironmaking with biomass as auxiliary reductant in the blast furnace, ISIJ Int., 49(2009), No. 9, p. 1316.

    Article  CAS  Google Scholar 

  38. P. Sodsai and P. Rachdawong, The Current situation on CO2 emissions from the steel industry in Thailand and mitigation options, Int. J. Greenhouse Gas Control, 6(2012), p. 48.

    Article  CAS  Google Scholar 

  39. H. Suopajärvi, E. Pongrácz, and T. Fabritius, Bioreducer use in Finnish blast furnace ironmaking — Analysis of CO2 emission reduction potential and mitigation cost, Appl. Energy, 124(2014), p. 82.

    Article  Google Scholar 

  40. W.D. Judge, J. Paeng, and G. Azimi, Electrorefining for direct decarburization of molten iron, Nat. Mater., 21(2022), 10, p. 1130.

    Article  CAS  Google Scholar 

  41. M. Asanuma, T. Ariyama, M. Sato, et al., Development of waste plastics injection process in blast furnace, ISIJ Int., 40(2000), No. 3, p. 244.

    Article  CAS  Google Scholar 

  42. A. Ziębik and W. Stanek, Forecasting of the energy effects of injecting plastic wastes into the blast furnace in comparison with other auxiliary fuels, Energy, 26(2001), No. 12, p. 1159.

    Article  Google Scholar 

  43. M. Meng, D.X. Niu, and W. Shang, CO2 emissions and economic development: China’s 12th five-year plan, Energy Policy, 42(2012), p. 468.

    Article  Google Scholar 

  44. R.G.D. Pinto, A.S. Szklo, and R. Rathmann, CO2 emissions mitigation strategy in the Brazilian iron and steel sector — From structural to intensity effects, Energy Policy, 114(2018), p. 380.

    Article  Google Scholar 

  45. W.Y. Chen, X. Yin, and D. Ma, A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions, Appl. Energy, 136(2014), p. 1174.

    Article  Google Scholar 

  46. A. Hasanbeigi, L. Price, C.X. Zhang, N. Aden, X.P. Li, and F.Q. Shangguan, Comparison of iron and steel production energy use and energy intensity in China and the U.S., J. Cleaner Prod., 65(2014), p. 108.

    Article  Google Scholar 

  47. A. Hasanbeigi, W. Morrow, J. Sathaye, E. Masanet, and T.F. Xu, A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry, Energy, 50(2013), p. 315.

    Article  Google Scholar 

  48. Y. Li and L. Zhu, Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector, Appl. Energy, 130(2014), p. 603.

    Article  Google Scholar 

  49. E. Worrell, L. Price, and N. Martin, Energy efficiency and carbon dioxide emissions reduction opportunities in the US iron and steel sector, Energy, 26(2001), No. 5, p. 513.

    Article  CAS  Google Scholar 

  50. H. Bai, X. Lu, H.X. Li, et al., The relationship between energy consumption and CO2 Emissions in iron and steel making, [in] M.D. Salazar-Villalpando, N.R. Neelameggham, D.P. Guillen, S. Pati, and G.K. Krumdick, eds., Energy Technology 2012: Carbon Dioxide Management and Other Technologies, John Wiley & Sons, Inc., Hoboken, 2012, p. 125.

    Google Scholar 

  51. X. Lu, H. Bai, L.H. Zhao, X.T. Liu, and D.Q. Cang, Relationship between energy consumption and CO2 emission of iron and steel plant, J. Univ. Sci. Technol. Beijing, 34(2012), p. 1445.

    CAS  Google Scholar 

  52. R.L. Milford, S. Pauliuk, J.M. Allwood, and D.B. Müller, The roles of energy and material efficiency in meeting steel industry CO2 targets, Environ. Sci. Technol., 47(2013), No. 7, p. 3455.

    Article  CAS  Google Scholar 

  53. B. Yu, X. Li, L. Shi, and Y. Qian, Quantifying CO2 emission reduction from industrial symbiosis in integrated steel Mills in China, J. Cleaner Prod., 103(2015), p. 801.

    Article  CAS  Google Scholar 

  54. H. Zhang, L. Dong, H.Q. Li, T. Fujita, S. Ohnishi, and Q. Tang, Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis, Energy Policy, 61(2013), p. 1400.

    Article  CAS  Google Scholar 

  55. Y.L. Shan, Z. Liu, and D.B. Guan, CO2 emissions from China’s lime industry, Appl. Energy, 166(2016), p. 245.

    Article  CAS  Google Scholar 

  56. H. Li, L.F. Guo, Z.Q. Li, W.C. Song, and Y.Q. Li, Research of low-carbon mode and on limestone addition instead of lime in the BOF steelmaking, J. Iron Steel Res. Int., 17(2010), Suppl. 2, p. 23.

    Google Scholar 

  57. A. Ziebik, K. Lampert, and M. Szega, Energy analysis of a blast-furnace system operating with the COREX process and CO2 removal, Energy, 33(2008), No. 2, p. 199.

    Article  CAS  Google Scholar 

  58. H. Xu, H. Qian, Y.S. Zhou, and Z.Y. Li, MIDREX shaft technology in COREX—DR combined process at SALDANHA steel, World Iron Steel, 10(2010), No. 2, p. 6.

    Google Scholar 

  59. X.D. Jin, Choice of non-coking ironmaking process, Iron Steel, 33(1998), No. 4, p. 11.

    Google Scholar 

  60. Z.H. Kuang, J.J. Lin, and X.Q. Li, Performance of Coal used in COREX Technological Process, Ironmaking, 27(2008), No. 4, p. 60.

    Google Scholar 

  61. L. Wang, L.H. Chen, H.O. Lv, Development situation of COREX smelting reduction process, J. Shenyang Inst. Eng. Nat. Sci., 2(2006), p. 373.

    Google Scholar 

  62. L.Y. Liu, H.G. Ji, X.F. Lü, et al., Mitigation of greenhouse gases released from mining activities: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 513.

    Article  CAS  Google Scholar 

  63. S. Pauliuk, R.L. Milford, D.B. Müller, and J.M. Allwood, The steel scrap age, Environ. Sci. Technol., 47(2013), No. 7, p. 3448.

    Article  CAS  Google Scholar 

  64. D. Kushnir, T. Hansen, V. Vogl, and M. Åhman, Adopting hydrogen direct reduction for the Swedish steel industry: A technological innovation system (TIS) study, J. Cleaner Prod., 242(2020), art. No. 118185.

  65. V. Vogl, M. Åhman, and L.J. Nilsson, Assessment of hydrogen direct reduction for fossil-free steelmaking, J. Cleaner Prod., 203(2018), p. 736.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the State Key Laboratory of Advanced Metallurgy, China (Project Code: 41603006). Mr. Hongfu Li from JIGANG Group Co., Ltd., China is gratefully acknowledged for his helpful comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Lu or Hao Bai.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Tian, W., Li, H. et al. Decarbonization options of the iron and steelmaking industry based on a three-dimensional analysis. Int J Miner Metall Mater 30, 388–400 (2023). https://doi.org/10.1007/s12613-022-2475-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2475-7

Keywords

Navigation