Skip to main content
Log in

High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The mechanical properties of as-extruded AZ80 magnesium alloy at temperatures of 450–525°C and strain rates of 3.0 s−1 and 0.15 s−1 were investigated by tensile tests. Zero ductility of alloy appeared at 500°C with a strain rate of 0.15 s−1, while the zero strength and zero ductility of the alloy were obtained nearly simultaneously at 525°C with a strain rate of 3.0 s−1. The results indicated that the lower strain rate accelerated the arrival of zero ductility. As the temperature increased, the failure mode of the alloy developed from trans-granular fracture to cleavage fracture and then to inter-granular fracture with the feature of sugar-like grains and fusion traces. The existence of the low-melting composite of β-Mg17Al12 and Al8Mn5 particles segregated near the Mg17Al12 phase along grain boundaries were demonstrated to be the reason for the brittle fracturing of the AZ80 alloy at high temperatures. Furthermore, microstructural evolution at temperatures approaching the solidus temperature was discussed to clarify magnesium alloy’s high temperature deformation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.H. You, Y.D. Huang, K.U. Kainer, and N. Hort, Recent research and developments on wrought magnesium alloys, J. Magnesium Alloys, 5(2017), No. 3, p. 239.

    Article  CAS  Google Scholar 

  2. T.C. Xu, Y. Yang, X.D. Peng, J.F. Song, and F.S. Pan, Overview of advancement and development trend on magnesium alloy, J. Magnesium Alloys, 7(2019), No. 3, p. 536.

    Article  CAS  Google Scholar 

  3. J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnesium Alloys, 8(2020), No. 1, p. 1.

    Article  CAS  Google Scholar 

  4. J. Rong, W.L. Xiao, X.Q. Zhao, C.L. Ma, H.M. Liao, D.L. He, M. Chen, M. Huang, and C. Huang, High thermal conductivity and high strength magnesium alloy for high pressure die casting ultrathin-walled components, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 88.

    Article  CAS  Google Scholar 

  5. Y. Li, P.J. Hou, Z.G. Wu, Z.L. Feng, Y. Ren, and H. Choo, Dynamic recrystallization of a wrought magnesium alloy: Grain size and texture maps and their application for mechanical behavior predictions, Mater. Des., 202(2021), art. No. 109562.

  6. J. Denk, L. Whitmore, O. Huber, O. Diwald, and H. Saage, Concept of the highly strained volume for fatigue modeling of wrought magnesium alloys, Int. J. Fatigue, 117(2018), p. 283.

    Article  CAS  Google Scholar 

  7. Z.R. Zeng, M.Z. Bian, S.W. Xu, W.N. Tang, C. Davies, N. Birbilis, and J.F. Nie, Optimisation of alloy composition for highly-formable magnesium sheet, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1388.

    Google Scholar 

  8. J.C. Yu, B. Song, D.B. Xia, X. Zeng, Y.D. Huang, N. Hort, P.L. Mao, and Z. Liu, Dynamic tensile properties and microstructural evolution of extruded EW75 magnesium alloy at high strain rates, J. Magnesium Alloys, 8(2020), No. 3, p. 849.

    Article  CAS  Google Scholar 

  9. J. Wang, G.M. Zhu, L.Y. Wang, E. Vasilev, J.S. Park, G. Sha, X.Q. Zeng, and M. Knezevic, Origins of high ductility exhibited by an extruded magnesium alloy Mg−1.8Zn−0.2Ca: Experiments and crystal plasticity modeling, J. Mater. Sci. Technol., 84(2021), p. 27.

    Article  Google Scholar 

  10. H. Jafari, A.H.M. Tehrani, and M. Heydari, Effect of extrusion process on microstructure and mechanical and corrosion properties of biodegradable Mg−5Zn−1.5Y magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 490.

    Article  CAS  Google Scholar 

  11. M.E. Mehtedi, A. DOrazio, A. Forcellese, M. Pieralisi, and M. Simoncini, Effect of the rolling temperature on hot formability of ZAM100 magnesium alloy, Procedia CIRP, 67(2018), p. 493.

    Article  Google Scholar 

  12. Y. Wang, F. Li, N. Bian, H.Q. Du, and P. da Huo, Mechanism of plasticity enhancement of AZ31B magnesium alloy sheet by accumulative alternating back extrusion, J. Magnesium Alloys, (2021). DOI: https://doi.org/10.1016/j.jma.2021.08.035

  13. Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30.

    Article  CAS  Google Scholar 

  14. R.B. Mei, L. Bao, F. Huang, X. Zhang, X.W. Qi, and X.H. Liu, Simulation of the flow behavior of AZ91 magnesium alloys at high deformation temperatures using a piecewise function of constitutive equations, Mech. Mater., 125(2018), p. 110.

    Article  Google Scholar 

  15. A. Hadadzadeh and M.A. Wells, Analysis of the hot deformation of ZK60 magnesium alloy, J. Magnesium Alloys, 5(2017), No. 4, p. 369.

    Article  CAS  Google Scholar 

  16. J.C. Long, Q.X. Xia, G.F. Xiao, Y. Qin, and S. Yuan, Flow characterization of magnesium alloy ZK61 during hot deformation with improved constitutive equations and using activation energy maps, Int. J. Mech. Sci., 191(2021), art. No. 106069.

  17. X.P. Zhang, H.X. Wang, L.P. Bian, S.X. Zhang, Y.P. Zhuang, W.L. Cheng, and W. Liang, Microstructure evolution and mechanical properties of Mg−9Al−1Si−1SiC composites processed by multi-pass equal-channel angular pressing at various temperatures, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1966.

    Article  CAS  Google Scholar 

  18. H.M. Wang, P.D. Wu, S. Kurukuri, M.J. Worswick, Y.H. Peng, D. Tang, and D.Y. Li, Strain rate sensitivities of deformation mechanisms in magnesium alloys, Int. J. Plast., 107(2018), p. 207.

    Article  CAS  Google Scholar 

  19. H. Wang, X. Sun, S. Kurukuri, M.J. Worswick, D.Y. Li, Y.H. Peng, and P.D. Wu, The strain rate sensitive and anisotropic behavior of rare-earth magnesium alloy ZEK100 sheet, J. Magnesium Alloys, (2021). DOI: https://doi.org/10.1016/j.jma.2021.06.010

  20. L. Li, O. Muránsky, E.A. Flores-Johnson, S. Kabra, L.M. Shen, and G. Proust, Effects of strain rate on the microstructure evolution and mechanical response of magnesium alloy AZ31, Mater. Sci. Eng. A, 684(2017), p. 37.

    Article  CAS  Google Scholar 

  21. E. Karimi, A. Zarei-Hanzaki, M.H. Pishbin, H.R. Abedi, and P. Changizian, Instantaneous strain rate sensitivity of wrought AZ31 magnesium alloy, Mater. Des., 49(2013), p. 173.

    Article  CAS  Google Scholar 

  22. Z.W. Cai, F.X. Chen, and J.Q. Guo, Constitutive model for elevated temperature flow stress of AZ41M magnesium alloy considering the compensation of strain, J. Alloys Compd., 648(2015), p. 215.

    Article  CAS  Google Scholar 

  23. A.S. Khan, A. Pandey, T. Gnäupel-Herold, and R.K. Mishra, Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures, Int. J. Plast., 27(2011), No. 5, p. 688.

    Article  CAS  Google Scholar 

  24. G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567.

    Article  Google Scholar 

  25. V.S. Hristov and K. Yoshida, Effects of chemical composition on drawability and mechanical properties of magnesium alloy wires, Procedia Manuf., 15(2018), p. 341.

    Article  Google Scholar 

  26. L.Y. Jiang, W.J. Huang, D.F. Zhang, F. Guo, H.S. Xue, J.Y. Xu, and F.S. Pan, Effect of Sn on the microstructure evolution of AZ80 magnesium alloy during hot compression, J. Alloys Compd., 727(2017), p. 205.

    Article  CAS  Google Scholar 

  27. S. Asqardoust, A. Zarei-Hanzaki, S.M. Fatemi, and M. Moradjoy-Hamedani, High temperature deformation behavior and microstructural evolutions of a high Zr containing WE magnesium alloy, J. Alloys Compd., 669(2016), p. 108.

    Article  CAS  Google Scholar 

  28. J.L. Zhang, H. Xie, Z.L. Lu, Y. Ma, S.P. Tao, and K. Zhao, Microstructure evolution and mechanical properties of AZ80 magnesium alloy during high-pass multi-directional forging, Results Phys., 10(2018), p. 967.

    Article  Google Scholar 

  29. G.L. Shi, K. Zhang, X.G. Li, Y.J. Li, M.L. Ma, J.W. Yuan, and H.J. Zhang, Dislocation configuration evolution during extension twinning and its influence on precipitation behavior in AZ80 wrought magnesium alloy, J. Magnesium Alloys, (2021). DOI: https://doi.org/10.1016/j.jma.2021.08.032

  30. L. Luo, Z.Y. Xiao, Q.H. Huo, Y. Yang, W.Y. Huang, J.C. Guo, Y.X. Ye, and X.Y. Yang, Enhanced mechanical properties of a hot-extruded AZ80 Mg alloy rod by pre-treatments and post-hot compression, J. Alloys Compd., 740(2018), p. 180.

    Article  CAS  Google Scholar 

  31. X. Song, L. Wang, and Y. Liu, A review of the strengthening—Toughening behavior and mechanisms of advanced structural materials by multifield coupling treatment, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 185.

    Article  Google Scholar 

  32. Z.M. Du, D.Y. Wang, and H.J. Zhang, Influence of hot extrusion process on microstructure and mechanical properties of Mg-Zn-Y-Zr magnesium alloy, Rare Met. Mater. Eng., 47(2018), No. 6, p. 1655.

    Article  CAS  Google Scholar 

  33. Z.J. Zhang, L. Yuan, D.B. Shan, and B. Guo, The quantitative effects of temperature and cumulative strain on the mechanical properties of hot-extruded AZ80 Mg alloy during multi-directional forging, Mater. Sci. Eng. A, 827(2021), art. No. 142036.

  34. X. Zhao, P.C. Gao, G. Chen, J.F. Wei, Z. Zhu, F.F. Yan, Z.M. Zhang, and Q. Wang, Effects of aging treatments on low-cycle fatigue behavior of extruded AZ80 for automobile wheel disks, Mater. Sci. Eng. A, 799(2021), art. No. 140366.

  35. Z.X. Su, L. Wan, C.Y. Sun, Y. Cai, and D.J. Yang, Hot deformation behavior of AZ80 magnesium alloy towards optimization of its hot workability, Mater. Charact., 122(2016), p. 90.

    Article  CAS  Google Scholar 

  36. Y. Cai, L. Wan, Z.H. Guo, C.Y. Sun, D.J. Yang, Q.D. Zhang, and Y.L. Li, Hot deformation characteristics of AZ80 magnesium alloy: Work hardening effect and processing parameter sensitivities, Mater. Sci. Eng. A, 687(2017), p. 113.

    Article  CAS  Google Scholar 

  37. P. Prakash, D. Toscano, S.K. Shaha, M.A. Wells, H. Jahed, and B.W. Williams, Effect of temperature on the hot deformation behavior of AZ80 magnesium alloy, Mater. Sci. Eng. A, 794(2020), art. No. 139923.

  38. Q. Tang, M.Y. Zhou, L.L. Fan, Y. Zhang, G.F. Quan, and B. Liu, Constitutive behavior of AZ80 M magnesium alloy compressed at elevated temperature and containing a small fraction of liquid, Vacuum, 155(2018), p. 476.

    Article  CAS  Google Scholar 

  39. C. Wang, T.J. Luo, and Y.S. Yang, Low cycle fatigue behavior of the extruded AZ80 magnesium alloy under different strain amplitudes and strain rates, J. Magnesium Alloys, 4(2016), No. 3, p. 181.

    Article  CAS  Google Scholar 

  40. G. Chen, S. Zhang, H.M. Zhang, F. Han, G. Wang, Q. Chen, and Z.D. Zhao, Controlling liquid segregation of semi-solid AZ80 magnesium alloy by back pressure thixoextruding, J. Mater. Process. Technol., 259(2018), p. 88.

    Article  CAS  Google Scholar 

  41. Y. Li, H.X. Li, L. Katgerman, Q. Du, J.S. Zhang, and L.Z. Zhuang, Recent advances in hot tearing during casting of aluminium alloys, Prog. Mater. Sci., 117(2021), art. No. 100741.

  42. J.F. Song, F.S. Pan, B. Jiang, A. Atrens, M.X. Zhang, and Y. Lu, A review on hot tearing of magnesium alloys, J. Magnesium Alloys, 4(2016), No. 3, p. 151.

    Article  CAS  Google Scholar 

  43. F. D’Elia, C. Ravindran, D. Sediako, K.U. Kainer, and N. Hort, Hot tearing mechanisms of B206 aluminum-copper alloy, Mater. Des., 64(2014), p. 44.

    Article  Google Scholar 

  44. F.S. Pan, Z.X. Feng, X.Y. Zhang, and A.T. Tang, The types and distribution characterization of Al-Mn phases in the AZ61 magnesium alloy, Procedia Eng., 27(2012), p. 833.

    Article  CAS  Google Scholar 

  45. T. Chen, Y. Yuan, T.T. Liu, D.J. Li, A.T. Tang, X.H. Chen, R. Schmid-Fetzer, and F.S. Pan, Effect of Mn addition on melt purification and Fe tolerance in Mg alloys, JOM, 73(2021), No. 3, p. 892.

    Article  CAS  Google Scholar 

  46. G. Zeng, J.W. Xian, and C.M. Gourlay, Nucleation and growth crystallography of Al8Mn5 on B2-Al(Mn, Fe) in AZ91 magnesium alloys, Acta Mater., 153(2018), p. 364.

    Article  CAS  Google Scholar 

  47. L. Peng, G. Zeng, J. Xian, and C.M. Gourlay, Al-Mn-Fe intermetallic formation in AZ91 magnesium alloys: Effects of impurity iron, Intermetallics, 142(2022), art. No. 107465.

  48. T.W. Clyne and G.J. Davies, The influence of composition on solidification cracking susceptibility in binary alloys, Br. Foundryman, 74(1981), No. 4, p. 65.

    Google Scholar 

  49. M.H. Ghoncheh, S.G. Shabestari, A. Asgari, and M. Karimzadeh, Nonmechanical criteria proposed for prediction of hot tearing sensitivity in 2024 aluminum alloy, Trans. Nonferrous Met. Soc. China, 28(2018), No. 5, p. 848.

    Article  CAS  Google Scholar 

  50. G.J. Zhang, Y. Wang, Z. Liu, and S.M. Liu, Influence of Al addition on solidification path and hot tearing susceptibility of Mg−2Zn−(3 + 0.5x)Y−xAl alloys, J. Magnesium Alloys, 7(2019), No. 2, p. 272.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. U1910213, 52001037, and U207601), the Chongqing Science and Technology Commission, China (Nos. cstc2020jcyj-msxmX0184 and cstc2019jscx-mbdxX0031), the University Innovation Research Group of Chongqing, China (No. CXQT20023), the Qinghai Scientific and Technological Plan Projects, China (No. 2018-GX-A1), and the Scientific Research Foundation of Chongqing University of Technology, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjun Liu or Bin Jiang.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Jiang, B., Xiang, H. et al. High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates. Int J Miner Metall Mater 29, 1373–1379 (2022). https://doi.org/10.1007/s12613-022-2456-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2456-x

Keywords

Navigation