Skip to main content
Log in

Review of electrodeposition methods for the preparation of high-entropy alloys

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

High-entropy alloys (HEAs) are suitable for engineering applications requiring excellent mechanical, corrosion, thermal, and magnetic properties. In the last decade, electrodeposition has emerged as a promising synthesis technique for HEAs. Research has focused on the influence of procedure parameters on the deposition of different HEA layers and the effect of their microstructure on their corrosion and magnetic properties. This review of current literature provides comprehensive information on HEAs and the use of direct and pulse electrodeposition as a synthesis technique for these materials. This review also addresses the research gaps on HEA production via electrodeposition, such as using other ceramic particles instead of graphene oxide in composite structures based on HEAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299.

    Article  CAS  Google Scholar 

  2. Z. Cheng, S.Z. Wang, G.L. Wu, J.H. Gao, X.S. Yang, and H.H. Wu, Tribological properties of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 389.

    Article  Google Scholar 

  3. W.R. Zhang, P.K. Liaw, and Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater., 61(2018), No. 1, p. 2.

    Article  CAS  Google Scholar 

  4. W.R. Wang, W. Qi, X.L. Zhang, X. Yang, L. Xie, D.Y. Li, and Y.H. Xiang, Superior corrosion resistance-dependent laser energy density in (CoCrFeNi)95Nb5 high entropy alloy coating fabricated by laser cladding, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 888.

    Article  CAS  Google Scholar 

  5. D. Karlsson, A. Marshal, F. Johansson, M. Schuisky, M. Sahlberg, J.M. Schneider, and U. Jansson, Elemental segregation in an AlCoCrFeNi high-entropy alloy—A comparison between selective laser melting and induction melting, J. Alloys Compd., 784(2019), p. 195.

    Article  CAS  Google Scholar 

  6. B.Q. Jin, N.N. Zhang, S. Guan, Y. Zhang, and D.Y. Li, Micro-structure and properties of laser re-melting FeCoCrNiAl0.5Six high-entropy alloy coatings, Surf. Coat. Technol., 349(2018), p. 867.

    Article  CAS  Google Scholar 

  7. A. Meghwal, A. Anupam, B.S. Murty, C.C. Berndt, R.S. Kottada, and A.S.M. Ang, Thermal spray high-entropy alloy coatings: A review, J. Therm. Spray Technol., 29(2020), No. 5, p. 857.

    Article  CAS  Google Scholar 

  8. H. Zhang, Y. Pan, Y.Z. He, and H.S. Jiao, Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding, Appl. Surf. Sci., 257(2011), No. 6, p. 2259.

    Article  CAS  Google Scholar 

  9. C.B. Wei, X.H. Du, Y.P. Lu, H. Jiang, T.J. Li, and T.M. Wang, Novel as-cast AlCrFe2Ni2Ti05 high-entropy alloy with excellent mechanical properties, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1312.

    Article  CAS  Google Scholar 

  10. T.T. Zuo, S.B. Ren, P.K. Liaw, and Y. Zhang, Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 6, p. 549.

    Article  CAS  Google Scholar 

  11. B.R. Braeckman, F. Boydens, H. Hidalgo, P. Dutheil, M. Jullien, A.L. Thomann, and D. Depla, High entropy alloy thin films deposited by magnetron sputtering of powder targets, Thin Solid Films, 580(2015), p. 71.

    Article  CAS  Google Scholar 

  12. M.D. Cropper, Thin films of AlCrFeCoNiCu high-entropy alloy by pulsed laser deposition, Appl. Surf. Sci., 455(2018), p. 153.

    Article  CAS  Google Scholar 

  13. X.H. Yan, J.S. Li, W.R. Zhang, and Y. Zhang, A brief review of high-entropy films, Mater. Chem. Phys., 210(2018), p. 12.

    Article  CAS  Google Scholar 

  14. N. Malatji, A.P.I. Popoola, T. Lengopeng, and S. Pityana, Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1332.

    Article  CAS  Google Scholar 

  15. M.H.K. Feizabad, E. Sarvestani, and G.R. Khayati, Modeling and optimization of chemical composition of nano/amorphous Fea.Nib.Nbc.Zrd alloy prepared via high-energy ball milling with enhanced soft magnetic properties; A mixture design approach, J. Alloys Compd., 841(2020), art. No. 155646.

  16. M.H.K. Feizabad, S. Sharafi, G.R. Khayati, and M. Ranjbar, Modeling of stress relaxation kinetics of amorphous Fe0.7Nb0.1Zr0.1Ti0.1 alloy powder: A novel approach based on differential thermal analysis, Powder Technol., 336(2018), p. 441.

    Article  CAS  Google Scholar 

  17. M.H.K. Feizabad, G.R. Khayati, S. Sharafi, and M. Ranjbar, Improvement of soft magnetic properties of Fe0.7Nb0.1 Zr0.1Ti0.1 amorphous alloy: A kinetic study approach, J. Non-Cryst. Solids, 493(2018), p. 11.

    Article  CAS  Google Scholar 

  18. M.H.K. Feizabad, S. Sharafi, G.R. Khayati, and M. Ranjbar, Effect of process control agent on the structural and magnetic properties of nano/amorphous Fe0.7Nb0.1Zr0.1Ti0.1 powders prepared by high energy ball milling, J. Magn. Magn. Mater., 449(2018), p. 297.

    Article  CAS  Google Scholar 

  19. C.D. Gómez-Esparza, R. Peréz-Bustamante, J.M. Alvarado-Orozco, J. Muñoz-Saldaña, R. Martínez-Sánchez, J.M. Olivares-Ramírez, and A. Duarte-Moller, Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTi high-entropy alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 634.

    Article  CAS  Google Scholar 

  20. W.R. Wang, H.F. Xie, L. Xie, H.L. Li, X. Yang, and Y.N. Shen, Anti-penetration performance of high entropy alloy-ceramic gradient composites, Int. J. Miner. Metall. Mater., 25(2018), No. 11, p. 1320.

    Article  CAS  Google Scholar 

  21. B. Niu, F. Zhang, H. Ping, N. Li, J.Y. Zhou, L.W. Lei, J.J. Xie, J.Y. Zhang, W.M. Wang, and Z.Y. Fu, Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys, Sci. Rep., 7(2017), art. No. 3421.

  22. C.Z. Yao, P. Zhang, M. Liu, G.R. Li, J.Q. Ye, P. Liu, and Y.X. Tong, Electrochemical preparation and magnetic study of Bi-Fe-Co-Ni-Mn high entropy alloy, Electrochimica Acta, 53(2008), No. 28, p. 8359.

    Article  CAS  Google Scholar 

  23. H. Li, H. Sun, C. Wang, B. Wei, C. Yao, Y. Tong, and H. Ma, Controllable electrochemical synthesis and magnetic behaviors of Mg-Mn-Fe-Co-Ni-Gd alloy films, J. Alloys Compd., 598(2014), p. 161.

    Article  CAS  Google Scholar 

  24. V. Soare, M. Burada, I. Constantin, D. Mitrică, V. Bădiliţă, A. Caragea, and M. Târcolea, Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films, Appl. Surf. Sci., 358(2015), p. 533.

    Article  CAS  Google Scholar 

  25. A. Aliyu and C. Srivastava, Microstructure and corrosion performance of AlFeCoNiCu high entropy alloy coatings by addition of graphene oxide, Materialia, 8(2019), art. No. 100459.

  26. A. Aliyu and C. Srivastava, Microstructure and corrosion properties of MnCrFeCoNi high entropy alloy-graphene oxide composite coatings, Materialia, 5(2019), art. No. 100249.

  27. A. Aliyu, M.Y. Rekha, and C. Srivastava, Microstructure-electrochemical property correlation in electrodeposited CuFeNiCoCr high-entropy alloy-graphene oxide composite coatings, Philos. Mag., 99(2019), No. 6, p. 718.

    Article  CAS  Google Scholar 

  28. A. Aliyu and C. Srivastava, Microstructure-corrosion property correlation in electrodeposited AlCrFeCoNiCu high entropy alloys-graphene oxide composite coatings, Thin Solid Films, 686(2019), art. No. 137434.

  29. F. Yoosefan, A. Ashrafi, S.M.M. Vaghefi, and I. Constantin, Synthesis of CoCrFeMnNi high entropy alloy thin films by pulse electrodeposition: Part 1: Effect of pulse electrodeposition parameters, Met. Mater. Int., 26(2020), No. 8, p. 1262.

    Article  CAS  Google Scholar 

  30. F. Yoosefan, A. Ashrafi, and S.M.M. Vaghefi, Characterization of Co-Cr-Fe-Mn-Ni high-entropy alloy thin films synthesized by pulse electrodeposition: Part 2: Effect of pulse electrodeposition parameters on the wettability and corrosion resistance, Met. Mater. Int., 27(2021), No. 1, p. 106.

    Article  CAS  Google Scholar 

  31. C.Z. Yao, B.H. Wei, P. Zhang, X.H. Lu, P. Liu, and Y.X. Tong, Facile preparation and magnetic study of amorphous Tm-Fe-Co-Ni-Mn multicomponent alloy nanofilm, J. Rare Earths, 29(2011), No. 2, p. 133.

    Article  CAS  Google Scholar 

  32. M.S. Zheng, Y. Li, J. Hu, Y. Zhao, and L.J. Yu, Preparation of high entropy alloy thin film fenicobimn by electroplating deposition method, Mater. Sci. Indian J., 11(2014), No. 10, p. 344.

    CAS  Google Scholar 

  33. R.M. Florea and I. Carcea, Sustainable anti-corrosive protection technologies for metal products by electrodeposition of HEA layers, IOP Conf. Ser.: Mater. Sci. Eng., 591(2019), No. 1, art. No. 012014.

  34. D.M. Kemény, N.M. Pálfi, and É. Fazakas, Examination of microstructure and corrosion properties of novel AlCoCrFeNi multicomponent alloy, Mater. Today Proc., 45(2021), p. 4250.

    Article  CAS  Google Scholar 

  35. J. Mendoza-Canale and J. Marín-Cruz, Corrosion behavior of titanium and nickel-based alloys in HCl and HCl+ H2S environments, Int. J. Electrochem. Sci., 3(2008), p. 346.

    Google Scholar 

  36. H.B. Muralidhara and Y.A. Naik, Electrochemical deposition of nanocrystalline zinc on steel substrate from acid zincate bath, Surf. Coat. Technol., 202(2008), No. 14, p. 3403.

    Article  CAS  Google Scholar 

  37. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61(2014), p. 1.

    Article  CAS  Google Scholar 

  38. M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, High-entropy Alloys: Fundamentals and Applications, Springer International Publishing Switzerland, 2016.

    Book  Google Scholar 

  39. D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448.

    Article  CAS  Google Scholar 

  40. J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim. Sci. Mat., 31(2006), No. 6, p. 633.

    Article  CAS  Google Scholar 

  41. A. Takeuchi and A. Inoue, Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys, Mater. Trans., JIM, 41(2000), No. 11, p. 1372.

    Article  CAS  Google Scholar 

  42. Y. Qiu, S. Thomas, D. Fabijanic, A.J. Barlow, H.L. Fraser, and N. Birbilis, Microstructural evolution, electrochemical and corrosion properties of AlxCoCrFeNiTiy high entropy alloys, Mater. Des., 170(2019), art. No. 107698.

  43. K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys, Acta Mater., 61(2013), No. 13, p. 4887.

    Article  CAS  Google Scholar 

  44. R.B. Nair, H.S. Arora, and H.S. Grewal, Enhanced cavitation erosion resistance of a friction stir processed high entropy alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1353.

    Article  CAS  Google Scholar 

  45. J.W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, C.H. Tsau, and S.Y. Chou, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A, 35(2004), No. 8, p. 2533.

    Article  Google Scholar 

  46. C. Lee, Y. Chou, G. Kim, M.C. Gao, K. An, J. Brechtl, C. Zhang, W. Chen, J.D. Poplawsky, G. Song, Y. Ren, Y.C. Chou, and P.K. Liaw, Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy, Adv. Mater., 32(2020), No. 49, art. No. 2004029.

  47. M.H. Tsai and J.W. Yeh, High-entropy alloys: A critical review, Mater. Res. Lett., 2(2014), No. 3, p. 107.

    Article  CAS  Google Scholar 

  48. J.Y. Pang, H.W. Zhang, L. Zhang, Z.W. Zhu, H.M. Fu, H. Li, A.M. Wang, Z.K. Li, and H.F. Zhang, Ductile Ti1.5ZrNbAl0.3 refractory high entropy alloy with high specific strength, Mater. Lett, 290(2021), art. No. 129428.

  49. B.M. Mundotiya and W. Ullah, Morphology controlled synthesis of the nanostructured gold by electrodeposition techniques. [in] M. Sone and K. Masu, eds., Novel Metal Electrodeposition and the Recent Application, London: IntechOpen, 2018.

    Google Scholar 

  50. F.W. Bach, A. Laarmann, and T. Wenz, Modern Surface Technology, Wiley-VCH Verlag GmbH & Co. KGaA, 2006.

  51. A. Brenner, Electrodeposition of Alloys—Principles and Practice, Elsevier Inc., 1963.

  52. N.P. Wasekar, N. Hebalkar, A. Jyothirmayi, B. Lavakumar, M. Ramakrishna, and G. Sundararajan, Influence of pulse parameters on the mechanical properties and electrochemical corrosion behavior of electrodeposited Ni-W alloy coatings with high tungsten content, Corros. Sci., 165(2020), art. No. 108409.

  53. T. Borkar, Electrodeposition of Nickel Composite Coatings [Dissertation], Oklahoma State University, 2010.

  54. M.S. Chandrasekar and M. Pushpavanam, Pulse and pulse reverse plating—Conceptual, advantages and applications, Electrochimica Acta, 53(2008), No. 8, p. 3313.

    Article  CAS  Google Scholar 

  55. Endres, Frank, Andrew Abbott, and Douglas R. MacFarlane, eds. Electrodeposition from ionic liquids. John Wiley & Sons, (2017).

  56. Y. Brif, M. Thomas, and I. Todd, The use of high-entropy alloys in additive manufacturing, Scr. Mater., 99(2015), p. 93.

    Article  CAS  Google Scholar 

  57. S. Varalakshmi, G.A. Rao, M. Kamaraj, and B.S. Murty, Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying, J. Mater. Sci., 45(2010), No. 19, p. 5158.

    Article  CAS  Google Scholar 

  58. M.D. Alcalá, C. Real, I. Fombella, I. Trigo, and J.M. Córdoba, Effects of milling time, sintering temperature, Al content on the chemical nature, microhardness and microstructure of mechanochemically synthesized FeCoNiCrMn high entropy alloy, J. Alloys Compd., 749(2018), p. 834.

    Article  CAS  Google Scholar 

  59. H. Cheng, X.Q. Liu, Q.H. Tang, W.G. Wang, X.H. Yan, and P.Q. Dai, Microstructure and mechanical properties of FeCoCrNiMnAlx high-entropy alloys prepared by mechanical alloying and hot-pressed sintering, J. Alloys Compd., 775(2019), p. 742.

    Article  CAS  Google Scholar 

  60. A.I. Yurkova, V.V. Cherniavsky, V. Bolbut, M. Krüger, and I. Bogomol, Structure formation and mechanical properties of the high-entropy AlCuNiFeCr alloy prepared by mechanical alloying and spark plasma sintering, J. Alloys Compd., 786(2019), p. 139.

    Article  CAS  Google Scholar 

  61. A. Poulia, E. Georgatis, C. Mathiou, and A.E. Karantzalis, Phase segregation discussion in a Hf25Zr30Ti20Nb15V10 high entropy alloy: The effect of the high melting point element, Mater. Chem. Phys., 210(2018), p. 251.

    Article  CAS  Google Scholar 

  62. J. Málek, J. Zýka, F. Lukáč, M. Vilémová, T. Vlasák, J. Čízek, O. Melikhova, A. Macháčková, and H.S. Kim, The effect of processing route on properties of HfNbTaTiZr high entropy alloy, Materials (Basel), 12(2019), No. 23, art. No. 4022.

  63. G.H. Meng, N.A. Protasova, E.P. Kruglov, X. Lin, H. Xie, and X. Ding, Solidification behavior and morphological evolution in laser surface forming of AlCoCrCuFeNi multi-layer high-entropy alloy coatings on AZ91D, J. Alloys Compd., 772(2019), p. 994.

    Article  CAS  Google Scholar 

  64. M.A. Haq, N.S.A. Eom, N. Su, H. Lee, T.S. Kim, and B.S. Kim, Powder interface modification for synthesis of core-shell structured CoCrFeNiTi high entropy alloy composite, Appl. Surf. Sci., 506(2020), art. No. 144925.

  65. Y.Y. Du, Y.P. Lu, T.M. Wang, T.J. Li, and G.L. Zhang, Effect of electromagnetic stirring on microstructure and properties of Al0.5CoCrCuFeNi alloy, Procedia Eng., 27(2012), p. 1129.

    Article  CAS  Google Scholar 

  66. L. Xie, P. Brault, A.L. Thomann, X. Yang, Y. Zhang, and G.Y. Shang, Molecular dynamics simulation of Al-Co-Cr-Cu-Fe-Ni high entropy alloy thin film growth, Intermetallics, 68(2016), p. 78.

    Article  CAS  Google Scholar 

  67. G. Jin, Z.B. Cai, Y.J. Guan, X.F. Cui, Z. Liu, Y. Li, M.L. Dong, and D. zhang, High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating, Appl. Surf. Sci., 445(2018), p. 113.

    Article  CAS  Google Scholar 

  68. A. Meghwal, A. Anupam, V. Luzin, C. Schulz, C. Hall, B.S. Murty, R.S. Kottada, C.C. Berndt, and A.S.M. Ang, Multiscale mechanical performance and corrosion behaviour of plasma sprayed AlCoCrFeNi high-entropy alloy coatings, J. Alloys Compd., 854(2021), art. No. 157140.

  69. P. Cui, Y.M. Ma, L.J. Zhang, M.D. Zhang, J.T. Fan, W.Q. Dong, P.F. Yu, and G. Li, Microstructure and mechanical behaviors of CoFeNiMnTixAl1−x high entropy alloys, Mater. Sci. Eng. A, 731(2018), p. 124.

    Article  CAS  Google Scholar 

  70. J. Málek, J. Zýka, F. Lukáč, J. ČíŽek, L. Kunčická, and R. Kocich, Microstructure and mechanical properties of sintered and heat-treated HfNbTaTiZr high entropy alloy, Metals, 9(2019), No. 12, art. No. 1324.

  71. X.Q. Liu, H. Cheng, Z.J. Li, H. Wang, F. Chang, W.G. Wang, Q.H. Tang, and P.Q. Dai, Microstructure and mechanical properties of FeCoCrNiMnTi0.1C0.1 high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering, Vacuum, 165(2019), p. 297.

    Article  CAS  Google Scholar 

  72. A.J. Zhang, J.S. Han, B. Su, and J.H. Meng, A promising new high temperature self-lubricating material: CoCrFeNiS0.5 high entropy alloy, Mater. Sci. Eng. A, 731(2018), p. 36.

    Article  CAS  Google Scholar 

  73. P.F. Yu, H. Cheng, L.J. Zhang, H. Zhang, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, and R.P. Liu, Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy, Mater. Sci. Eng. A, 655(2016), p. 283.

    Article  CAS  Google Scholar 

  74. F. Xiong, R.D. Fu, Y.J. Li, and D.L. Sang, Effects of nitrogen alloying and friction stir processing on the microstructures and mechanical properties of CoCrFeMnNi high-entropy alloys, J. Alloys Compd., 822(2020), art. No. 153512.

  75. G. Liu, L. Liu, X.W. Liu, Z.J. Wang, Z.H. Han, G.J. Zhang, and A. Kostka, Microstructure and mechanical properties of Al0.7CoCrFeNi high-entropy-alloy prepared by directional solidification, Intermetallics, 93(2018), p. 93.

    Article  CAS  Google Scholar 

  76. J.G. Kim, J.M. Park, J.B. Seol, J. Choe, J.H. Yu, S.S. Yang, and H.S. Kim, Nano-scale solute heterogeneities in the ultrastrong selectively laser melted carbon-doped CoCrFeMnNi alloy, Mater. Sci. Eng. A, 773(2020), art. No. 138726.

  77. Y. Dong, D.X. Qiao, H.Z. Zhang, Y.P. Lu, T.M. Wang, and T.J. Li, Microstructure evolution and hardness of AlCrFeNixMo0.2 high entropy alloy, Mater. Sci. Forum, 849(2016), p. 40.

    Article  Google Scholar 

  78. Y.S. Kim, H.J. Park, S.C. Mun, E. Jumaev, S.H. Hong, G. Song, J.T. Kim, Y.K. Park, K.S. Kim, S.I. Jeong, Y.H. Kwon, and K.B. Kim, Investigation of structure and mechanical properties of TiZrHfNiCuCo high entropy alloy thin films synthesized by magnetron sputtering, J. Alloys Compd., 797(2019), p. 834.

    Article  CAS  Google Scholar 

  79. Q. Chao, T.T. Guo, T. Jarvis, X.H. Wu, P. Hodgson, and D. Fabijanic, Direct laser deposition cladding of AlxCoCrFeNi high entropy alloys on a high-temperature stainless steel, Surf. Coat. Technol., 332(2017), p. 440.

    Article  CAS  Google Scholar 

  80. T.M. Yue, H. Xie, X. Lin, H.O. Yang, and G.H. Meng, Microstructure of laser re-melted AlCoCrCuFeNi high entropy alloy coatings produced by plasma spraying, Entropy, 15(2013), No. 12, p. 2833.

    Article  CAS  Google Scholar 

  81. Y. Tian, C.Y. Lu, Y.F. Shen, and X.M. Feng, Microstructure and corrosion property of CrMnFeCoNi high entropy alloy coating on Q235 substrate via mechanical alloying method, Surf. Interfaces, 15(2019), p. 135.

    Article  CAS  Google Scholar 

  82. Z.Q. Fu, L. Jiang, J.L. Wardini, B.E. MacDonald, H.M. Wen, W. Xiong, et al., A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength, Sci. Adv., 4(2018), art. No. eaat8712.

  83. I.L. Velo, F.J. Gotor, M.D. Alcalá, C. Real, and J.M. Córdoba, Fabrication and characterization of WC-HEA cemented carbide based on the CoCrFeNiMn high entropy alloy, J. Alloys Compd., 746(2018), p. 1.

    Article  CAS  Google Scholar 

  84. N. Larianovsky, A. Katz-Demyanetz, E. Eshed, and M. Regev, Microstructure, tensile and creep properties of Ta20Nb20 Hf20Zr20Ti20 high entropy alloy, Materials (Basel), 10(2017), No. 8, art. No. 883.

  85. L. Guo, D.H. Xiao, W.Q. Wu, S. Ni, and M. Song, Effect of Fe on microstructure, phase evolution and mechanical properties of (AlCoCrFeNi)100−xFex high entropy alloys processed by spark plasma sintering, Intermetallics, 103(2018), p. 1.

    Article  CAS  Google Scholar 

  86. C. Yang, K. Aoyagi, H.K. Bian, and A. Chiba, Microstructure evolution and mechanical property of a precipitation-strengthened refractory high-entropy alloy HfNbTaTiZr, Mater. Lett., 254(2019), p. 46.

    Article  CAS  Google Scholar 

  87. T.E. Whitfield, H.J. Stone, C.N. Jones, and N.G. Jones, Micro-structural degradation of the AlMo0.5NbTa0.5TiZr refractory metal high-entropy superalloy at elevated temperatures, Entropy (Basel), 23(2021), No. 1, art. No. 80.

  88. H.T. Zheng, R.R. Chen, G. Qin, X.Z. Li, Y.Q. Su, H.S. Ding, J.J. Guo, and H.Z. Fu, Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification, J. Mater. Sci. Technol., 38(2020), p. 19.

    Article  Google Scholar 

  89. A.O. Moghaddam, J. Pasandideh, A. Abdollahzadeh, N.A. Shaburova, and E. Trofimov, On the application of NbTaTiVW refractory high entropy alloy particles in the manufacturing process of WC based matrix body drill bits, Int. J. Refract. Met. Hard Mater., 99(2021), art. No. 105608.

  90. J.H. Pi, Y. Pan, L. Zhang, and H. Zhang, Microstructure and property of AlTiCrFeNiCu high-entropy alloy, J. Alloys Compd., 509(2011), No. 18, p. 5641.

    Article  CAS  Google Scholar 

  91. W.B. Liao, S. Lan, L.B. Gao, H.T. Zhang, S. Xu, J. Song, X.L. Wang, and Y. Lu, Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering, Thin Solid Films, 638(2017), p. 383.

    Article  CAS  Google Scholar 

  92. M. Dada, P. Popoola, and N. Mathe, Recent advances of high entropy alloys for aerospace applications: A review, World J. Eng., 2021, https://doi.org/10.1108/WJE-01-2021-00400

  93. J.K. Xiao, H. Tan, Y.Q. Wu, J. Chen, and C. Zhang, Microstructure and wear behavior of FeCoNiCrMn high entropy alloy coating deposited by plasma spraying, Surf. Coat. Technol., 385(2020), art. No. 125430.

  94. I. Moravcik, J. Cizek, P. Gavendova, S. Sheikh, S. Guo, and I. Dlouhy, Effect of heat treatment on microstructure and mechanical properties of spark plasma sintered AlCoCrFeNiTi0.5 high entropy alloy, Mater. Lett., 174(2016), p. 53.

    Article  CAS  Google Scholar 

  95. L. Yang, C.C. Zhao, W.W. Zhu, Z. Cheng, P.B. Wei, and F.Z. Ren, Microstructure, mechanical properties, and sliding wear behavior of oxide-dispersion-strengthened FeMnNi alloy fabricated by spark plasma sintering, Metall. Mater. Trans. A, 51(2020), No. 6, p. 2796.

    Article  CAS  Google Scholar 

  96. W.Y. Huo, H. Zhou, F. Fang, X.F. Zhou, Z.H. Xie, and J.Q. Jiang, Microstructure and properties of novel CoCrFeNiTax eutectic high-entropy alloys, J. Alloys Compd., 735(2018), p. 897.

    Article  CAS  Google Scholar 

  97. O.N. Senkov, S.V. Senkova, and C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys, Acta Mater., 68(2014), p. 214.

    Article  CAS  Google Scholar 

  98. T.T. Zuo, X. Yang, P.K. Liaw, and Y. Zhang, Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy, Intermetallics, 67(2015), p. 171.

    Article  CAS  Google Scholar 

  99. G.N. Zhang, X. Yang, Z.C. Yang, Y. Li, G. He, and J.T. Li, Preparation of WC/CoCrFeNiAl0.2 high-entropy-alloy composites by high-gravity combustion synthesis, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 244.

    Article  CAS  Google Scholar 

  100. Y. Zhang, Y. Liu, Y.X. Li, X. Chen, and H.W. Zhang, Micro-structure and mechanical properties of a new refractory HfNbSi0.5TiVZr high entropy alloy, Mater. Sci. Forum, 849(2016), p. 76.

    Article  Google Scholar 

  101. L. Liu, J.B. Zhu, C. Hou, J.C. Li, and Q. Jiang, Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering, Mater. Des., 46(2013), p. 675.

    Article  CAS  Google Scholar 

  102. J.K. Xiao, Y.Q. Wu, J. Chen, and C. Zhang, Microstructure and tribological properties of plasma sprayed FeCoNiCrSiAlx high entropy alloy coatings, Wear, 448–449(2020), art. No. 203209.

  103. K.C. Cheng, J.H. Chen, S. Stadler, and S.H. Chen, Properties of atomized AlCoCrFeNi high-entropy alloy powders and their phase-adjustable coatings prepared via plasma spray process, Appl. Surf. Sci., 478(2019), p. 478.

    Article  CAS  Google Scholar 

  104. S. Thangaraju, E. Bouzy, and A. Hazotte, Phase stability of a mechanically alloyed CoCrCuFeNi high entropy alloy, Adv. Eng. Mater., 19(2017), No. 8, art. No. 1700095.

  105. V. Shivam, J. Basu, V.K. Pandey, Y. Shadangi, and N.K. Mukhopadhyay, Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy, Adv. Powder Technol., 29(2018), No. 9, p. 2221.

    Article  CAS  Google Scholar 

  106. ł. Rogal, D. Kalita, A. Tarasek, P. Bobrowski, and F. Czerwinski, Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy, J. Alloys Compd., 708(2017), p. 344.

    Article  CAS  Google Scholar 

  107. O. Maulik, D. Kumar, S. Kumar, D.M. Fabijanic, and V. Kumar, Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys, Intermetallics, 77(2016), p. 46.

    Article  CAS  Google Scholar 

  108. S. Li, S. Lei, Y.B. Wu, S.S. Hu, Y.F. Liu, and H.L. Xu, Effect of Ti content on magnetic and electrochemical corrosion properties of FeCoCrNi high entropy alloys, ECS J. Solid State Sci. Technol., 10(2021), No. 3, art. No. 033003.

  109. M. Izadi, M. Soltanieh, S. Alamolhoda, S.M.S. Aghamiri, and M. Mehdizade, Microstructural characterization and corrosion behavior of AlxCoCrFeNi high entropy alloys, Mater. Chem. Phys., 273(2021), art. No. 124937.

  110. A.C. Yeh, Y.J. Chang, C.W. Tsai, Y.C. Wang, J.W. Yeh, and C.M. Kuo, On the solidification and phase stability of a Co-Cr-Fe-Ni-Ti high-entropy alloy, Metall. Mater. Trans. A, 45(2014), No. 1, p. 184.

    Article  CAS  Google Scholar 

  111. M. Zhu, C. Zhang, K. Li, Y.Q. Liu, M. Zhang, L.J. Yao, and Z.Y. Jian, A novel CoFe2NiMn0.3AlCux high-entropy alloy with excellent magnetic properties and good mechanical properties, Acta Metall. Sinica Engl. Lett., 34(2021), No. 11, p. 1557.

    Article  CAS  Google Scholar 

  112. L.Z. Medina, L. Riekehr, and U. Jansson, Phase formation in magnetron sputtered CrMnFeCoNi high entropy alloy, Surf. Coat. Technol., 403(2020), art. No. 126323.

  113. S.Y. Duan, X.H. Zhan, M.Y. Wu, H.C. Bu, and Q.Y. Gao, Analysis of elements non-uniform distribution of FeCoCrNi high-entropy alloy coatings on Ti-6Al-4V surface by laser cladding, Met. Mater. Int., 27(2021), No. 3, p. 467.

    Article  CAS  Google Scholar 

  114. H. Li, J.L. Li, C.Q. Yan, X.F. Zhang, and D.S. Xiong, Microstructure and tribological properties of plasma-sprayed Al0.2Co1.5CrFeNi1.5Ti-Ag composite coating from 25 to 750°C, J. Mater. Eng. Perform., 29(2020), No. 3, p. 1640.

    Article  CAS  Google Scholar 

  115. W.L. Hsu, H. Murakami, H. Araki, M. Watanabe, S. Kuroda, A.C. Yeh, and J.W. Yeh, A study of NiCo0.6Fe0.2CrxSiAlTiy High-entropy alloys for applications as a high-temperature protective coating and a bond coat in thermal barrier coating systems, J. Electrochem. Soc., 165(2018), No. 9, p. C524.

    Article  CAS  Google Scholar 

  116. C. Ni, Y. Shi, J. Liu, and G.Z. Huang, Characterization of Al0.5FeCu0.7NiCoCr high-entropy alloy coating on aluminum alloy by laser cladding, Opt. Laser Technol., 105(2018), p. 257.

    Article  CAS  Google Scholar 

  117. R.B. Mane, R. Y, and B.B. Panigrahi, Sintering mechanism of CoCrFeMnNi high-entropy alloy powders, Powder Metall., 61(2018), No. 2, p. 131.

    Article  CAS  Google Scholar 

  118. Y.S. Geng, H. Tan, L. Wang, A.K. Tieu, J. Chen, J. Cheng, and J. Yang, Nano-coupled heterostructure induced excellent mechanical and tribological properties in AlCoCrFeNi high entropy alloy, Tribol. Int., 154(2021), art. No. 106662.

  119. N.D. Stepanov, N.Y. Yurchenko, D.V. Skibin, M.A. Tikhonovsky, and G.A. Salishchev, Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys, J. Alloys Compd., 652(2015), p. 266.

    Article  CAS  Google Scholar 

  120. T.T. Shun and Y.C. Du, Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy, J. Alloys Compd., 479(2009), No. 1–2, p. 157.

    Article  CAS  Google Scholar 

  121. H.T. Zheng, R.R. Chen, G. Qin, X.Z. Li, Y.Q. Su, H.S. Ding, J.J. Guo, and H.Z. Fu, Phase separation of AlCoCrFeNi2.1 eutectic high-entropy alloy during directional solidification and their effect on tensile properties, Intermetallics, 113(2019), art. No. 106569.

  122. J.J. Yi, S. Tang, M.Q. Xu, L. Yang, L. Wang, and L. Zeng, A novel Al0.5CrCuNiV 3d transition metal high-entropy alloy: Phase analysis, microstructure and compressive properties, J. Alloys Compd., 846(2020), art. No. 156466.

  123. L.Q. Chen, W. Li, P. Liu, K. Zhang, F.C. Ma, X.H. Chen, H.L. Zhou, and X.K. Liu, Microstructure and mechanical properties of (AlCrTiZrV)Nx high-entropy alloy nitride films by reactive magnetron sputtering, Vacuum, 181(2020), art. No. 109706.

  124. S. Yin, W.Y. Li, B. Song, X.C. Yan, M. Kuang, Y.X. Xu, K. Wen, and R. Lupoi, Deposition of FeCoNiCrMn high entropy alloy (HEA) coating via cold spraying, J. Mater. Sci. Technol., 35(2019), No. 6, p. 1003.

    Article  CAS  Google Scholar 

  125. L.M. Wang, C.C. Chen, J.W. Yeh, and S.T. Ke, The microstructure and strengthening mechanism of thermal spray coating NixCo0.6Fe0.2CrySizAlTi0.2 high-entropy alloys, Mater. Chem. Phys., 126(2011), No. 3, p. 880.

    Article  CAS  Google Scholar 

  126. X.W. Qiu, Microstructure, hardness and corrosion resistance of Al2CoCrCuFeNiTix high-entropy alloy coatings prepared by rapid solidification, J. Alloys Compd., 735(2018), p. 359.

    Article  CAS  Google Scholar 

  127. C.W. Wang, H.M. Wang, G.R. Li, M. Liu, D. Zhang, H.R. Wen, W.X. Ren, L.P. Gao, and J.J. Chen, Microwave vacuum sintering of FeCoNi1.5CuB0.5Y0.2 high-entropy alloy: Effect of heat treatment on microstructure and mechanical property, Vacuum, 181(2020), art. No. 109738.

  128. G.R. Zhang and Y.Q. Wu, High-entropy transparent ceramics: Review of potential candidates and recently studied cases, Int. J. Appl. Ceram. Technol., 19(2022), No. 2, p. 644.

    Article  CAS  Google Scholar 

  129. N.Y. Yurchenko, N.D. Stepanov, S.V. Zherebtsov, M.A. Tikhonovsky, and G.A. Salishchev, Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x = 0–1.5) high-entropy alloys, Mater. Sci. Eng. A, 704(2017), p. 82.

    Article  CAS  Google Scholar 

  130. H.B. Cui, H.Y. Wang, J.Y. Wang, and H.Z. Fu, Microstructure and microsegregation in directionally solidified FeCoNiCrAl high entropy alloy, Adv. Mater. Res., 189–193(2011), p. 3840.

    Article  CAS  Google Scholar 

  131. Y.P. Lu, H.F. Huang, X.Z. Gao, C.L. Ren, J. Gao, H.Z. Zhang, S.J. Zheng, Q.Q. Jin, Y.H. Zhao, C.Y. Lu, T.M. Wang, and T.J. Li, A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy, J. Mater. Sci. Technol., 35(2019), No. 3, p. 369.

    Article  CAS  Google Scholar 

  132. J.J. Wang, S.F. Kuang, X. Yu, L.Q. Wang, and W.J. Huang, Tribo-mechanical properties of CrNbTiMoZr high-entropy alloy film synthesized by direct current magnetron sputtering, Surf. Coat. Technol., 403(2020), art. No. 126374.

  133. X.W. Qiu, Structure and electrochemical properties of laser cladding Al2CoCrCuFeNiTix high-entropy alloy coatings, Met. Mater. Int., 26(2020), No. 7, p. 998.

    Article  CAS  Google Scholar 

  134. T.C. Li, Y. Liu, B. Liu, W.M. Guo, and L.Y. Xu, Microstructure and wear behavior of FeCoCrNiMo0.2 high entropy coatings prepared by air plasma spray and the high velocity oxyfuel spray processes, Coatings, 7(2017), No. 9, art. No. 151.

  135. Q.D. Qin, J.B. Qu, Y.E. Hu, Y.J. Wu, and X.D. Su, Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi-TiO high-entropy alloy, Int. J. Miner. Metall. Mater., 25(2018), No. 11, p. 1286.

    Article  CAS  Google Scholar 

  136. K.V. Yusenko, S. Riva, W.A. Crichton, K. Spektor, E. Bykova, A. Pakhomova, A. Tudball, I. Kupenko, A. Rohrbach, S. Klemme, F. Mazzali, S. Margadonna, N.P. Lavery, and S.G.R. Brown, High-pressure high-temperature tailoring of High Entropy Alloys for extreme environments, J. Alloys Compd., 738(2018), p. 491.

    Article  CAS  Google Scholar 

  137. J.B. Cheng, X.B. Liang, and B.S. Xu, Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings, Surf. Coat. Technol., 240(2014), p. 184.

    Article  CAS  Google Scholar 

  138. F. He, Z.J. Wang, S.Z. Niu, Q.F. Wu, J.J. Li, J.C. Wang, C.T. Liu, and Y.Y. Dang, Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate, J. Alloys Compd., 667(2016), p. 53.

    Article  CAS  Google Scholar 

  139. S. Alvi, D.M. Jarzabek, M.G. Kohan, D. Hedman, P. Jenczyk, M.M. Natile, A. Vomiero, and F. Akhtar, Synthesis and mechanical characterization of a CuMoTaWV high-entropy film by magnetron sputtering, ACS Appl. Mater. Interfaces, 12(2020), No. 18, p. 21070.

    Article  CAS  Google Scholar 

  140. W.L. Hsu, H. Murakami, J.W. Yeh, A.C. Yeh, and K. Shimoda, On the study of thermal-sprayed Ni0.2Co0.6Fe0.2 CrSi0.2AlTi0.2 HEA overlay coating, Surf. Coat. Technol., 316(2017), p. 71.

    Article  CAS  Google Scholar 

  141. T.D. Huang, S.Y. Wu, H. Jiang, Y.P. Lu, T.M. Wang, and T.J. Li, Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1318.

    Article  CAS  Google Scholar 

  142. S.K. Wong, T.T. Shun, C.H. Chang, and C.F. Lee, Microstructures and properties of Al0.3CoCrFeNiMnx high-entropy alloys, Mater. Chem. Phys., 210(2018), p. 146.

    Article  CAS  Google Scholar 

  143. Y.K. Xu, C.L. Li, Z.H. Huang, Y.N. Chen, and L.X. Zhu, Microstructure evolution and mechanical properties of FeCoCrNiCuTi0.8 high-entropy alloy prepared by directional solidification, Entropy (Basel), 22(2020), No. 7, art. No. 786.

  144. Y. Zhang, High-Entropy Materials, Springer Nature Singapore, 2(2019), p. 65.

    Article  Google Scholar 

  145. H. Kim, S. Nam, A. Roh, M. Son, M.H. Ham, J.H. Kim, and H. Choi, Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films, Int. J. Refract. Met. Hard Mater., 80(2019), p. 286.

    Article  CAS  Google Scholar 

  146. H. Zhang, Y. Pan, and Y.Z. He, Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding, Mater. Des., 32(2011), No. 4, p. 1910.

    Article  CAS  Google Scholar 

  147. W.L. Hsu, Y.C. Yang, C.Y. Chen, and J.W. Yeh, Thermal sprayed high-entropy NiCo0.6Fe0.2Cr1.5SiAlTi0.2 coating with improved mechanical properties and oxidation resistance, Intermetallics, 89(2017), p. 105.

    Article  CAS  Google Scholar 

  148. É. Fazakas, J.Q. Wang, V. Zadorozhnyy, D.V. Louzguine-Luzgin, and L.K. Varga, Microstructural evolution and corrosion behavior of Al25Ti25Ga25Be25 equi-molar composition alloy, Mater. Corros., 65(2014), No. 7, p. 691.

    Article  CAS  Google Scholar 

  149. H.T. Zheng, Q. Xu, R.R. Chen, G. Qin, X.Z. Li, Y.Q. Su, J.J. Guo, and H.Z. Fu, Microstructure evolution and mechanical property of directionally solidified CoCrFeMnNi high entropy alloy, Intermetallics, 119(2020), art. No. 106723.

  150. J. Wang, T. Guo, J.S. Li, W.J. Jia, and H.C. Kou, Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy, Mater. Chem. Phys., 210(2018), p. 192.

    Article  CAS  Google Scholar 

  151. M.H. Tsai, J.W. Yeh, and J.Y. Gan, Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon, Thin Solid Films, 516(2008), No. 16, p. 5527.

    Article  CAS  Google Scholar 

  152. Y. Zhang, T.F. Han, M. Xiao, and Y.F. Shen, Effect of process parameters on the microstructure and properties of laser-clad FeNiCoCrTi0.5 high-entropy alloy coating, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 630.

    Article  CAS  Google Scholar 

  153. L.H. Tian, M. Fu, and W. Xiong, Microstructural evolution of AlCoCrFeNiSi high-entropy alloy powder during mechanical alloying and its coating performance, Materials (Basel), 11(2018), No. 2, art. No. 320.

  154. Y. Liu, Y. Zhang, H. Zhang, N.J. Wang, X. Chen, H.W. Zhang, and Y.X. Li, Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites, J. Alloys Compd., 694(2017), p. 869.

    Article  CAS  Google Scholar 

  155. Y.M. Tan, J.S. Li, J. Wang, and H.C. Kou, Seaweed eutecticdendritic solidification pattern in a CoCrFeNiMnPd eutectic high-entropy alloy, Intermetallics, 85(2017), p. 74.

    Article  CAS  Google Scholar 

  156. S. Elkatatny, M.A.H. Gepreel, A. Hamada, K. Nakamura, K. Yamanaka, and A. Chiba, Effect of Al content and cold rolling on the microstructure and mechanical properties of Al5Cr12Fe35Mn28Ni20 high-entropy alloy, Mater. Sci. Eng. A, 759(2019), p. 380.

    Article  CAS  Google Scholar 

  157. D. Dou, X.C. Li, Z.Y. Zheng, and J.C. Li, Coatings of FeAlCoCuNiV high entropy alloy, Surf. Eng., 32(2016), No. 10, p. 766.

    Article  CAS  Google Scholar 

  158. L.H. Tian, W. Xiong, C. Liu, S. Lu, and M. Fu, Microstructure and wear behavior of atmospheric plasma-sprayed AlCoCrFeNiTi high-entropy alloy coating, J. Mater. Eng. Perform., 25(2016), No. 12, p. 5513.

    Article  CAS  Google Scholar 

  159. S.Z. Niu, H.C. Kou, J. Wang, and J.S. Li, Improved tensile properties of Al0.5CoCrFeNi high-entropy alloy by tailoring microstructures, Rare Met., 40(2021), No. 9, p. 1.

    Article  CAS  Google Scholar 

  160. M.L. Wang, G.J. Zhang, H.Z. Cui, Y.P. Lu, Y. Zhao, N. Wei, and T.J. Li, Effect of plasma remelting on microstructure and properties of a CoCrCuNiAl0.5 high-entropy alloy prepared by spark plasma sintering, J. Mater. Sci., 56(2021), No. 9, p. 5878.

    Article  CAS  Google Scholar 

  161. Y. Dong, Y.P. Lu, J.R. Kong, J.J. Zhang, and T.J. Li, Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys, J. Alloys Compd., 573(2013), p. 96.

    Article  CAS  Google Scholar 

  162. L.R. Shaginyan, V.F. Gorban’, N.A. Krapivka, S.A. Firstov, and I.F. Kopylov, Properties of coatings of the Al-Cr-Fe-Co-Ni-Cu-V high entropy alloy produced by the magnetron sputtering, J. Superhard Mater., 38(2016), No. 1, p. 25.

    Article  Google Scholar 

  163. P.K. Huang, J.W. Yeh, T.T. Shun, and S.K. Chen, Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating, Adv. Eng. Mater., 6(2004), No. 1–2, p. 74.

    Article  CAS  Google Scholar 

  164. M. Zhu, L.J. Yao, Y.Q. Liu, M. Zhang, K. Li, and Z.Y. Jian, Microstructure evolution and mechanical properties of a novel CrNbTiZrAlx (0.25≤x≤1.25) eutectic refractory high-entropy alloy, Mater. Lett., 272(2020), art. No. 127869.

  165. C.D. Dai, Y. Fu, J.X. Guo, and C.W. Du, Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1388.

    Article  CAS  Google Scholar 

  166. Y. Dong, K.Y. Zhou, Y.P. Lu, X.X. Gao, T.M. Wang, and T.J. Li, Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy, Mater. Des., 57(2014), p. 67.

    Article  CAS  Google Scholar 

  167. Z.N. An, H.L. Jia, Y.Y. Wu, P.D. Rack, A.D. Patchen, Y.Z. Liu, Y. Ren, N. Li, and P.K. Liaw, Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition, Mater. Res. Lett., 3(2015), No. 4, p. 203.

    Article  CAS  Google Scholar 

  168. R. Bureš, H. Hadraba, M. Fáberová, P. Kollár, J. Füzer, P. Roupcová, and M. Strečková, FeSiBAlNiMo high entropy alloy prepared by mechanical alloying, Acta Phys. Pol. A, 131(2017), No. 4, p. 771.

    Article  Google Scholar 

  169. J.J. Yi, L. Wang, L. Zeng, M.Q. Xu, L. Yang, and S. Tang, Excellent strength-ductility synergy in a novel single-phase equiatomic CoFeNiTiV high entropy alloy, Int. J. Refract. Met. Hard Mater., 95(2021), art. No. 105416.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Shojaei.

Ethics declarations

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaei, Z., Khayati, G.R. & Darezereshki, E. Review of electrodeposition methods for the preparation of high-entropy alloys. Int J Miner Metall Mater 29, 1683–1696 (2022). https://doi.org/10.1007/s12613-022-2439-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2439-y

Keywords

Navigation