Skip to main content
Log in

Bioleaching and biosorption behavior of vanadium-bearing stone coal by Bacillus mucilaginosus

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The recovery of vanadium (V) from stone coal by bioleaching is a promising method. The bioleaching experiments and the biosorption experiments were carried out, aiming to explore the adsorption characteristics of Bacillus mucilaginosus (B. mucilaginosus) on the surface of vanadium-bearing stone coal, and the related mechanisms have been investigated. After bioleaching at 30°C for 28 d, the cumulative leaching rate of V reached 60.2%. The biosorption of B. mucilaginosus on stone coal was affected by many factors. When the pH value of leaching system is 5.0, strong electrostatic attraction between bacteria and stone coal promoted biosorption. Bacteria in the logarithmic growth phase had mature and excellent biosorption properties. The initial bacterial concentration of 3.5 × 108 CFU/mL was conducive to adhesion, with 38.9% adsorption rate and 3.6 × 107 CFU/g adsorption quantity. The adsorption of B. mucilaginosus on the stone coal conformed to the Freundlich model and the pseudo-second-order kinetic model. Bacterial surface carried functional groups (−CH2, −CH3, −NH2, etc.), which were highly correlated with the adsorption behavior. In addition, biosorption changed the surface properties of stone coal, resulting in the isoelectric point (IEP) approaching the bacteria. The results could provide an effective reference for the adsorption laws of bacteria on minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Faramarzi, M. Mogharabi-Manzari, and H. Brandl, Bioleaching of metals from wastes and low-grade sources by HCN-forming microorganisms, Hydrometallurgy, 191(2020), art. No. 105228.

  2. H.F. Zhao, H.Y. Yang, L.L. Tong, Q. Zhang, and Y. Kong, Biooxidation—thiosulfate leaching of refractory gold concentrate, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1075.

    Article  CAS  Google Scholar 

  3. S.H. Yin, L.M. Wang, A.X. Wu, X. Chen, and R.F. Yan, Research progress in enhanced bioleaching of copper sulfides under the intervention of microbial communities, Int. J. Miner. Metall. Mater., 26(2019), No. 11, p. 1337.

    Article  CAS  Google Scholar 

  4. Y.B. Dong, H. Lin, Y. Liu, and Y. Zhao, Blank roasting and bioleaching of stone coal for vanadium recycling, J. Clean. Prod., 243(2020), art. No. 118625.

  5. Y. Lv, J. Li, H.P. Ye, et al., Bioleaching of silicon in electrolytic manganese residue using single and mixed silicate bacteria, Bioprocess Biosyst. Eng., 42(2019), No. 11, p. 1819.

    Article  CAS  Google Scholar 

  6. Y.F. Zhou, R.C. Wang, X.C. Lu, and T.H. Chen, Roles of adhered Paenibacillus polymyxa in the dissolution and flotation of bauxite: A dialytic investigation, Front. Earth Sci. China, 4(2010), No. 2, p. 167.

    Article  CAS  Google Scholar 

  7. Z. Xue, Z.Y. Nie, H.C. Liu, et al., Effect of the surface microstructure of arsenopyrite on the attachment of Sulfobacillus thermosulfidooxidans in the presence of dissolved As(III), Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1135.

    Article  CAS  Google Scholar 

  8. H. Abdollahi, M. Noaparast, S.Z. Shafaei, et al., Silver-catalyzed bioleaching of copper, molybdenum and rhenium from a chalcopyrite—molybdenite concentrate, Int. Biodeterior. Biodegrad., 104(2015), p. 194.

    Article  CAS  Google Scholar 

  9. M.N. Chandraprabha and K.A. Natarajan, Surface chemical and flotation behaviour of chalcopyrite and pyrite in the presence of Acidithiobacillus thiooxidans, Hydrometallurgy, 83(2006), No. 1–4, p. 146.

    Article  CAS  Google Scholar 

  10. J.Z. Sun, J.K. Wen, B.W. Chen, and B. Wu, Mechanism of Mg2+ dissolution from olivine and serpentine: Implication for bioleaching of high-magnesium nickel sulfide ore at elevated pH, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1069.

    Article  CAS  Google Scholar 

  11. J.T. He, Z.L. Cai, Y.M. Zhang, N.N. Xue, X.J. Wang, and Q.S. Zheng, Effects of energy source on bioleaching of vanadium-bearing shale by Acidithiobacillus ferrooxidans, Biochem. Eng. J., 151(2019), art. No. 107355.

  12. Y.B. Dong, H. Lin, X.F. Xu, and S.S. Zhou, Bioleaching of different copper sulfides by Acidithiobacillus ferrooxidans and its adsorption on minerals, Hydrometallurgy, 140(2013), p. 42.

    Article  CAS  Google Scholar 

  13. S.N. Tan and M. Chen, Early stage adsorption behaviour of Acidithiobacillus ferrooxidans on minerals I: An experimental approach, Hydrometallurgy, 119–120(2012), p. 87.

    Article  Google Scholar 

  14. Z.H. Wang, X.H. Xie, and J.S. Liu, Experimental measurements of short-term adsorption of Acidithiobacillus ferrooxidans onto chalcopyrite, Trans. Nonferrous Met. Soc. China, 22(2012), No. 2, p. 442.

    Article  CAS  Google Scholar 

  15. J.Y. Zhu, Q. Li, W.F. Jiao, et al., Adhesion forces between cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans and chalcopyrite, Colloids Surf. B Biointerfaces, 94(2012), p. 95.

    Article  CAS  Google Scholar 

  16. W.L. Feng, Y.Y. Li, Z.Y. Lin, et al., The influence on biosorption potentials of metal-resistant bacteria Enterobacter sp. EG16 and Bacillus subtilis DBM by typical red soil minerals, J. Soils Sediments, 20(2020), No. 8, p. 3217.

    Article  CAS  Google Scholar 

  17. N.Q. Lu, T.J. Hu, Y.B. Zhai, et al., Fungal cell with artificial metal container for heavy metals biosorption: Equilibrium, kinetics study and mechanisms analysis, Environ. Res., 182(2020), art. No. 109061.

  18. B. Shojaei and I. Khazaee, 1-D transient microbial fuel cell simulation considering biofilm growth and temperature variation, Int. J. Therm. Sci., 162(2021), art. No. 106801.

  19. Y. Lv, J. Li, H. Ye, et al., Bioleaching of electrolytic manganese residue by silicate bacteria, and optimization of parameters during the leaching process, Min. Metall. Explor., 35(2018), No. 4, p. 176.

    Google Scholar 

  20. X. Wang, H. Lin, Y.B. Dong, and G.Y. Li, Bioleaching of vanadium from barren stone coal and its effect on the transition of vanadium speciation and mineral phase, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 253.

    Article  CAS  Google Scholar 

  21. Y. Lv, J. Li, H.P. Ye, et al., Bioleaching behaviors of silicon and metals in electrolytic manganese residue using silicate bacteria, J. Clean. Prod., 228(2019), p. 901.

    Article  CAS  Google Scholar 

  22. W. Luo and X.C. Zheng, Adsorption behaviors of Rhodotorula sp. in the bioleaching process of Acidithiobacillus ferrooxidans, J. Environ. Eng., 145(2019), No. 11, art. No. 04019073.

  23. Z.Z. Huang, S.S. Feng, Y.J. Tong, and H.L. Yang, Enhanced “contact mechanism” for interaction of extracellular polymeric substances with low-grade copper-bearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus, J. Environ. Manage., 242(2019), p. 11.

    Article  CAS  Google Scholar 

  24. Y.G. Wang, K. Li, X.H. Chen, and H.B. Zhou, Responses of microbial community to pH stress in bioleaching of low grade copper sulfide, Bioresour. Technol., 249(2018), p. 146.

    Article  CAS  Google Scholar 

  25. M. Farahat, T. Hirajima, K. Sasaki, and K. Doi, Adhesion of Escherichia coli onto quartz, hematite and corundum: Extended DLVO theory and flotation behavior, Colloids Surf. B, 74(2009), No. 1, p. 140.

    Article  CAS  Google Scholar 

  26. N. Yee, J.B. Fein, and C.J. Daughney, Experimental study of the pH, ionic strength, and reversibility behavior of bacteria—mineral adsorption, Geochim. Cosmochim. Acta, 64(2000), No. 4, p. 609.

    Article  CAS  Google Scholar 

  27. A.R. Shashikala and A.M. Raichur, Role of interfacial phenomena in determining adsorption of Bacillus polymyxa onto hematite and quartz, Colloids Surf. B Biointerfaces, 24(2002), No. 1, p. 11.

    Article  CAS  Google Scholar 

  28. X.D. Hao, X.D. Liu, Q. Yang, et al., Comparative study on bioleaching of two different types of low-grade copper tailings by mixed moderate thermophiles, Trans. Nonferrous Met. Soc. China, 28(2018), No. 9, p. 1847.

    Article  CAS  Google Scholar 

  29. Y. Gurevich, M. Teremova, G. Bondarenko, and S. Kislan, Biochemical leaching of kaolinite—hematite—boehmite type bauxite ore, Indian J. Chem. Technol., 22(2015), No. 5, p. 248.

    Google Scholar 

  30. A. Monballiu, N. Cardon, M. Tri Nguyen, et al., Tolerance of chemoorganotrophic bioleaching microorganisms to heavy metal and alkaline stresses, Bioinorg. Chem. Appl., 2015(2015), art. No. 861874.

  31. T.N. Tran, D.G. Kim, and S.O. Ko, Encapsulation of biogenic manganese oxide and Pseudomonas putida MnB1 for removing 17 α-ethinylestradiol from aquatic environments, J. Water Process Eng., 37(2020), art. No. 101423.

  32. S. Charaabi, R. Absi, A.M. Pensé-Lhéritier, M. Le Borgne, and S. Issa, Adsorption studies of benzophenone-3 onto clay minerals and organosilicates: Kinetics and modelling, Appl. Clay Sci., 202(2021), art. No. 105937.

  33. R.L. Yu, Z.H. Liu, Z.J. Yu, et al., Relationship among the secretion of extracellular polymeric substances, heat resistance, and bioleaching ability of Metallosphaera sedula, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1504.

    Article  CAS  Google Scholar 

  34. R.Y. Zhang, S. Hedrich, F. Römer, D. Goldmann, and A. Schippers, Bioleaching of cobalt from Cu/Co-rich sulfidic mine tailings from the polymetallic Rammelsberg mine, Germany, Hydrometallurgy, 197(2020), art. No. 105443.

  35. H.F. Yang, T. Li, Y.H. Chang, H. Luo, and Q.Y. Tang, Possibility of using strain F9 (Serratia marcescens) as a bio-collector for hematite flotation, Int. J. Miner. Metall. Mater., 21(2014), No. 3, p. 210.

    Article  CAS  Google Scholar 

  36. R.H. Lara, J.V. García-Meza, R. Cruz, D. Valdez-Pérez, and I. González, Influence of the sulfur species reactivity on biofilm conformation during pyrite colonization by Acidithiobacillus thiooxidans, Appl. Microbiol. Biotechnol., 95(2012), No. 3, p. 799.

    Article  CAS  Google Scholar 

  37. H. Nouri, E. Azin, A. Kamyabi, and H. Moghimi, Biosorption performance and cell surface properties of a fungal-based sorbent in azo dye removal coupled with textile wastewater, Int. J. Environ. Sci. Technol., 18(2021), No. 9, p. 2545.

    Article  CAS  Google Scholar 

  38. J.Y. Zhu, Q.F. Wang, S. Zhou, et al., Insights into the relation between adhesion force and chalcopyrite-bioleaching by Acidithiobacillus ferrooxidans, Colloids Surf. B, 126(2015), p. 351.

    Article  CAS  Google Scholar 

  39. Y.L. Huang, Y.S. Zhang, H.B. Zhao, et al., Bioleaching of chalcopyrite—bornite and chalcopyrite—pyrite mixed ores in the presence of moderately thermophilic microorganisms, Int. J. Electrochem. Sci., (2017), p. 10493.

  40. A. Adamou, A. Nicolaides, and C. Varotsis, Bio-hydrometallurgy dynamics of copper sulfide-minerals probed by micro-FTIR mapping and Raman microspectroscopy, Miner. Eng., 132(2019), p. 39.

    Article  CAS  Google Scholar 

  41. P.C. Hu, Y.M. Zhang, T. Liu, et al., Highly selective separation of vanadium over iron from stone coal by oxalic acid leaching, J. Ind. Eng. Chem., 45(2017), p. 241.

    Article  CAS  Google Scholar 

  42. R.L. Yu, C.W. Hou, A.J. Liu, et al., Extracellular DNA enhances the adsorption of Sulfobacillus thermosulfidooxidans strain ST on chalcopyrite surface, Hydrometallurgy, 176(2018), p. 97.

    Article  CAS  Google Scholar 

  43. D. Fullston, D. Fornasiero, and J. Ralston, Zeta potential study of the oxidation of copper sulfide minerals, Colloids Surf. A Physicochem. Eng. Aspects, 146(1999), No. 1–3, p. 113.

    Article  CAS  Google Scholar 

  44. W. Sand, T. Gehrke, P.G. Jozsa, and A. Schippers, (Bio)chemistry of bacterial leaching—Direct vs. indirect bioleaching, Hydrometallurgy, 59(2001), No. 2–3, p. 159.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 51874018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Lin.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Chong, S. & Lin, H. Bioleaching and biosorption behavior of vanadium-bearing stone coal by Bacillus mucilaginosus. Int J Miner Metall Mater 30, 283–292 (2023). https://doi.org/10.1007/s12613-021-2344-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2344-9

Keywords

Navigation