Skip to main content
Log in

A chain-like compound of Si@CNT nanostructures and MOF-derived porous carbon as an anode for Li-ion batteries

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Silicon anodes are considered to have great prospects for use in batteries; however, many of their defects still need to be improved. The preparation of hybrid materials based on porous carbon is one of the effective ways to alleviate the adverse impact resulting from the volume change and the inferior electronic conductivity of a silicon electrode. Herein, a chain-like carbon cluster structure is prepared, in which MOF-derived porous carbon acts as a shell structure to integrally encapsulate Si nanoparticles, and CNTs play a role in connecting carbon shells. Based on the exclusive structure, the carbon shell can accommodate the volume expansion more effectively, and CNTs can improve the overall stability and conductivity. The resulting composite reveals excellent rate capacity and enhanced cycling stability; in particular, a capacity of 732 mA·h·g−1 at 2 A·g−1 is achieved with a reservation rate of 72.3% after cycling 100 times at 1 A·g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.T. Jeena, T. Bok, S.H. Kim, S. Park, J.Y. Kim, S. Park, and J.H. Ryu, A siloxane-incorporated copolymer as an in situ cross-linkable binder for high performance silicon anodes in Li-ion batteries, Nanoscale, 8(2016), No. 17, p. 9245.

    Article  CAS  Google Scholar 

  2. Q.H. Chen, Y. Cheng, H.D. Liu, Q.B. Zhang, V. Petrova, H.X. Chen, P. Liu, D.L. Peng, M.L. Liu, and M.S. Wang, Hierarchical design of Mn2P nanoparticles embedded in N, P-codoped porous carbon nanosheets enables highly durable lithium storage, ACS Appl. Mater. Interfaces, 12(2020), No. 32, p. 36247.

    Article  CAS  Google Scholar 

  3. L.Z. Zhao, H.H. Wu, C.H. Yang, Q.B. Zhang, G.M. Zhong, Z.M. Zheng, H.X. Chen, J.M. Wang, K. He, B.L. Wang, T. Zhu, X.C. Zeng, M.L. Liu, and M.S. Wang, Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes, ACS Nano, 12(2018), No. 12, p. 12597.

    Article  CAS  Google Scholar 

  4. Q.B. Zhang, Z.L. Gong, and Y. Yang, Advance in interface and characterizations of sulfide solid electrolyte materials, Acta Phys. Sin., 69(2020), No. 22, art. No. 228803.

  5. C.M. Hayner, X. Zhao, and H.H. Kung, Materials for rechargeable lithium-ion batteries, Annu. Rev. Chem. Biomol. Eng., 3(2012), No. 1, p. 445.

    Article  CAS  Google Scholar 

  6. J.W. Choi and D. Aurbach, Promise and reality of post-lithiumion batteries with high energy densities, Nat. Rev. Mater., 1(2016), No. 4, p. 1.

    Article  CAS  Google Scholar 

  7. Z.M. Zheng, H.H. Wu, H.D. Liu, Q.B. Zhang, X. He, S.C. Yu, V. Petrova, J. Feng, R. Kostecki, P. Liu, D.L. Peng, M.L. Liu, and M.S. Wang, Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets, ACS Nano, 14(2020), No. 8, p. 9545.

    Article  CAS  Google Scholar 

  8. Y. Jiang, D.Y. Song, J. Wu, Z.X. Wang, S.S. Huang, Y. Xu, Z.W. Chen, B. Zhao, and J.J. Zhang, Sandwich-like SnS2/graphene/SnS2 with expanded interlayer distance as high-rate lithium/sodium-ion battery anode materials, ACS Nano, 13(2019), No. 8, p. 9100.

    Article  CAS  Google Scholar 

  9. Z.M. Zheng, P. Li, J. Huang, H.D. Liu, Y. Zao, Z.L. Hu, L. Zhang, H.X. Chen, M.S. Wang, D.L. Peng, and Q.B. Zhang, High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design, J. Energy Chem., 41(2020), p. 126.

    Article  Google Scholar 

  10. Z.W. Chen, S.M. Fei, C.H. Wu, P.J. Xin, S.S. Huang, L. Selegård, K. Uvdal, and Z.J. Hu, Integrated design of hierarchical CoSnO3@NC@MnO@NC nanobox as anode material for enhanced lithium storage performance, ACS Appl. Mater. Interfaces, 12(2020), No. 17, p. 19768.

    Article  CAS  Google Scholar 

  11. Y. Jiang, Y.Y. Wan, W. Jiang, H.H. Tao, W.R. Li, S.S. Huang, Z.W. Chen, and B. Zhao, Stabilizing the reversible capacity of SnO2/graphene composites by Cu nanoparticles, Chem. Eng. J., 367(2019), p. 45.

    Article  CAS  Google Scholar 

  12. M.N. Obrovac and V.L. Chevrier, Alloy negative electrodes for Li-ion batteries, Chem. Rev., 114(2014), No. 23, p. 11444.

    Article  CAS  Google Scholar 

  13. L.F. Guo, S.Y. Zhang, J. Xie, D. Zhen, Y. Jin, K.Y. Wan, D.G. Zhuang, W.Q. Zheng, and X.B. Zhao, Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 515.

    Article  CAS  Google Scholar 

  14. Q.B. Zhang, H.X. Chen, L.L. Luo, B.T. Zhao, H. Luo, X. Han, J.W. Wang, C.M. Wang, Y. Yang, T. Zhu, and M.L. Liu, Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries, Energy Environ. Sci., 11(2018), No. 3, p. 669.

    Article  CAS  Google Scholar 

  15. J.Y. Li, Q. Xu, G. Li, Y.X. Yin, L.J. Wan, and Y.G. Guo, Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries, Mater. Chem. Front., 1(2017), No. 9, p. 1691.

    Article  CAS  Google Scholar 

  16. A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater., 9(2010), No. 4, p. 353.

    Article  CAS  Google Scholar 

  17. A. Iqbal, L. Chen, Y. Chen, Y.X. Gao, F. Chen, and D.C. Li, Lithium-ion full cell with high energy density using nickel-rich LiNiCoMnO2 cathode and SiO-C composite anode, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1473.

    Article  CAS  Google Scholar 

  18. W.L. An, B. Gao, S.X. Mei, B. Xiang, J.J. Fu, L. Wang, Q.B. Zhang, P.K. Chu, and K.F. Huo, Scalable synthesis of ant-nestlike bulk porous silicon for high-performance lithium-ion battery anodes, Nat. Commun., 10(2019), No. 1, art. No. 1447.

  19. Y. Jiang, J.L. Jiang, Z.X. Wang, M.R. Han, X.Y. Liu, J. Yi, B. Zhao, X.L. Sun, and J.J. Zhang, Li4.4Sn encapsulated in hollow graphene spheres for stable Li metal anodes without dendrite formation for long cycle-life of lithium batteries, Nano Energy, 70(2020), art. No. 104504.

  20. Q. Xu, J.K. Sun, J.Y. Li, Y.X. Yin, and Y.G. Guo, Scalable synthesis of spherical Si/C granules with 3D conducting networks as ultrahigh loading anodes in lithium-ion batteries, Energy Storage Mater., 12(2018), p. 54.

    Article  Google Scholar 

  21. X.H. Shen, Z.Y. Tian, R.J. Fan, L. Shao, D.P. Zhang, G.L. Cao, L. Kou, and Y.Z. Bai, Research progress on silicon/carbon composite anode materials for lithium-ion battery, J. Energy Chem., 27(2018), No. 4, p. 1067.

    Article  Google Scholar 

  22. X.S. Zhou, L.J. Wan, and Y.G. Guo, Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries, Small, 9(2013), No. 16, p. 2684.

    Article  CAS  Google Scholar 

  23. J.H. Zhu, J. Yang, Z.X. Xu, J.L. Wang, Y.N. Nuli, X.D. Zhuang, and X.L. Feng, Silicon anodes protected by a nitrogen-doped porous carbon shell for high-performance lithium-ion batteries, Nanoscale, 9(2017), No. 25, p. 8871.

    Article  CAS  Google Scholar 

  24. R.R. Salunkhe, Y.V. Kaneti, J. Kim, J.H. Kim, and Y. Yamauchi, Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications, Acc. Chem. Res., 49(2016), No. 12, p. 2796.

    Article  CAS  Google Scholar 

  25. G.Y. Xu, P. Nie, H. Dou, B. Ding, L.Y. Li, and X.G. Zhang, Exploring metal organic frameworks for energy storage in batteries and supercapacitors, Mater. Today, 20(2017), No. 4, p. 191.

    Article  CAS  Google Scholar 

  26. X.K. Song, S. Chen, L.L. Guo, Y. Sun, X.P. Li, X. Cao, Z.X. Wang, J.H. Sun, C. Lin, and Y. Wang, General dimension-controlled synthesis of hollow carbon embedded with metal singe atoms or core-shell nanoparticles for energy storage applications, Adv. Energy Mater., 8(2018), No. 27, art. No. 1801101.

  27. N.T. Liu, J. Liu, D.Z. Jia, Y.D. Huang, J. Luo, X. Mamat, Y. Yu, Y.M. Dong, and G.Z. Hu, Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries, Energy Storage Mater., 18(2019), p. 165.

    Article  Google Scholar 

  28. Y.Z. Han, P.F. Qi, X. Feng, S.W. Li, X.T. Fu, H.W. Li, Y.F. Chen, J.W. Zhou, X.G. Li, and B. Wang, In situ growth of MOFs on the surface of Si nanoparticles for highly efficient lithium storage: Si@MOF nanocomposites as anode materials for lithium-ion batteries, ACS Appl. Mater. Interfaces, 7(2015), No. 4, p. 2178.

    Article  CAS  Google Scholar 

  29. R.S. Gao, J. Tang, X.L. Yu, S. Tang, K. Ozawa, T. Sasaki, and L.C. Qin, In situ synthesis of MOF-derived carbon shells for silicon anode with improved lithium-ion storage, Nano Energy, 70(2020), art. No. 104444.

  30. D. Jin, X.F. Yang, Y.Q. Ou, M.M. Rao, Y.T. Zhong, G.M. Zhou, D.Q. Ye, Y.C. Qiu, Y.P. Wu, and W.S. Li, Thermal pyrolysis of Si@ZIF-67 into Si@N-doped CNTs towards highly stable lithium storage, Sci. Bull., 65(2020), No. 6, p. 452.

    Article  CAS  Google Scholar 

  31. M. Kumar and Y. Ando, Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production, J. Nanosci. Nanotechnol., 10(2010), No. 6, p. 3739.

    Article  CAS  Google Scholar 

  32. X.F. Feng, K. Liu, X. Xie, R.F. Zhou, L.N. Zhang, Q.Q. Li, S.S. Fan, and K.L. Jiang, Thermal analysis study of the growth kinetics of carbon nanotubes and epitaxial graphene layers on them, J. Phys. Chem. C, 113(2009), No. 22, p. 9623.

    Article  CAS  Google Scholar 

  33. S.Y. Kim, J. Lee, B.H. Kim, Y.J. Kim, K.S. Yang, and M.S. Park, Facile synthesis of carbon-coated silicon/graphite spherical composites for high-performance lithium-ion batteries, ACS Appl. Mater. Interfaces, 8(2016), No. 19, p. 12109.

    Article  CAS  Google Scholar 

  34. A. Aijaz, J. Masa, C. Rösler, W. Xia, P. Weide, A.J.R. Botz, R.A. Fischer, W. Schuhmann, and M. Muhler, Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode, Angew. Chem. Int. Ed, 55(2016), No. 12, p. 4087.

    Article  CAS  Google Scholar 

  35. L.W. Su, Z. Zhou, and M.M. Ren, Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries, Chem. Commun., 46(2010), No. 15, p. 2590.

    Article  CAS  Google Scholar 

  36. N. Iqbal, X.F. Wang, J.Y. Yu, N. Jabeen, H. Ullah, and B. Ding, In situ synthesis of carbon nanotube doped metal-organic frameworks for CO2 capture, RSC Adv., 6(2016), No. 6, p. 4382.

    Article  CAS  Google Scholar 

  37. F.X. Bu, W.S. Chen, J.J. Gu, P.O. Agboola, N.F. Al-Khalli, I. Shakir, and Y.X. Xu, Microwave-assisted CVD-like synthesis of dispersed monolayer/few-layer N-doped graphene encapsulated metal nanocrystals for efficient electrocatalytic oxygen evolution, Chem. Sci., 9(2018), No. 34, p. 7009.

    Article  CAS  Google Scholar 

  38. H. Shang, Z.C. Zuo, L. Yu, F. Wang, F. He, and Y.L. Li, Low-temperature growth of all-carbon graphdiyne on a silicon anode for high-performance lithium-ion batteries, Adv. Mater., 30(2018), No. 27, art. No. 1801459.

  39. T.S. Mu, P.J. Zuo, S.F. Lou, Q.R. Pan, H. Zhang, C.Y. Du, Y.Z. Gao, X.Q. Cheng, Y.L. Ma, H. Huo, and G.P. Yin, A three-dimensional silicon/nitrogen-doped graphitized carbon composite as high-performance anode material for lithium ion batteries, J. Alloys Compd., 777(2019), p. 190.

    Article  CAS  Google Scholar 

  40. W.F. Miao, X.Y. Zhao, R. Wang, Y.Q. Liu, L. Li, Z.S. Zhang, and W.M. Zhang, Carbon shell encapsulated cobalt phosphide nanoparticles embedded in carbon nanotubes supported on carbon nanofibers: A promising anode for potassium ion battery, J. Colloid Interface Sci., 556(2019), p. 432.

    Article  CAS  Google Scholar 

  41. H.L. Wu, Y. Li, J. Ren, D.W. Rao, Q.J. Zheng, L. Zhou, and D.M. Lin, CNT-assembled dodecahedra core@nickel hydroxide nanosheet shell enabled sulfur cathode for high-performance lithium-sulfur batteries, Nano Energy, 55(2019), p. 82.

    Article  CAS  Google Scholar 

  42. W. Weng, H.J. Lin, X.L. Chen, J. Ren, Z.T. Zhang, L.B. Qiu, G.Z. Guan, and H.S. Peng, Flexible and stable lithium ion batteries based on three-dimensional aligned carbon nanotube/silicon hybrid electrodes, J. Mater. Chem. A, 2(2014), No. 24, art. No. 9306.

  43. X. Men, T. Wang, B.H. Xu, Z. Kong, X.H. Liu, A.P. Fu, Y.H. Li, P.Z. Guo, Y.G. Guo, H.L. Li, and X.S. Zhao, Hierarchically structured microspheres consisting of carbon coated silicon nanocomposites with controlled porosity as superior anode material for lithium-ion batteries, Electrochim. Acta, 324(2019), art. No. 134850.

  44. X.S. Zhou, A.M. Cao, L.J. Wan, and Y.G. Guo, Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries, Nano Res., 5(2012), No. 12, p. 845.

    Article  CAS  Google Scholar 

  45. T.F. Liu, Q.L. Chu, C. Yan, S.Q. Zhang, Z. Lin, and J. Lu, Interweaving 3D network binder for high-areal-capacity Si anode through combined hard and soft polymers, Adv. Energy Mater., 9(2019), No. 3, art. No. 1802645.

  46. Y. Jiang, Z.X. Wang, C.X. Xu, W.X. Li, Y. Li, S.S. Huang, Z.W. Chen, B. Zhao, X.L. Sun, D.P. Wilkinson, and J.J. Zhang, Atomic layer deposition for improved lithiophilicity and solid electrolyte interface stability during lithium plating, Energy Storage Mater., 28(2020), p. 17.

    Article  Google Scholar 

  47. L. Feng, X. Han, X.R. Su, B.C. Pang, Y.L. Luo, F. Hu, M.J. Zhou, K. Tao, and Y.Y. Xia, Metal-organic frameworks derived porous carbon coated SiO composite as superior anode material for lithium ion batteries, J. Alloys Compd., 765(2018), p. 512.

    Article  CAS  Google Scholar 

  48. M.K. Majeed, G.Y. Ma, Y.X. Cao, H.Z. Mao, X.J. Ma, and W.Z. Ma, Metal-organic frameworks-derived mesoporous Si/SiOx@NC nanospheres as a long-lifespan anode material for lithium-ion batteries, Chem., 25(2019), No. 51, p. 11991.

    Article  CAS  Google Scholar 

  49. X. Zhu, S.H. Choi, R. Tao, X.L. Jia, and Y.F. Lu, Building high-rate silicon anodes based on hierarchical Si@C@CNT nanocomposite, J. Alloys Compd., 791(2019), p. 1105.

    Article  CAS  Google Scholar 

  50. H. Zhang, P. Zong, M. Chen, H. Jin, Y. Bai, S.W. Li, F. Ma, H. Xu, and K. Lian, In situ synthesis of multilayer carbon matrix decorated with copper particles: Enhancing the performance of Si as anode for Li-ion batteries, ACS Nano, 13(2019), No. 3, p. 3054.

    Article  CAS  Google Scholar 

  51. J.B. Li, W.J. Liu, Q. Wan, F.M. Liu, X. Li, Y.J. Qiao, M.Z. Qu, and G.C. Peng, Facile spray-drying synthesis of dual-shell structure Si@SiOx@graphite/graphene as stable anode for Li-ion batteries, Energy Technol., 7(2019), No. 9, art. No. 1900464.

Download references

Acknowledgement

This work was financially supported by the “Light of West China” Program of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gong-chang Peng or Zheng-wei Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Yj., Zhang, H., Hu, Yx. et al. A chain-like compound of Si@CNT nanostructures and MOF-derived porous carbon as an anode for Li-ion batteries. Int J Miner Metall Mater 28, 1611–1620 (2021). https://doi.org/10.1007/s12613-021-2266-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2266-6

Keywords

Navigation