Skip to main content
Log in

Recovery and separation of Fe and Mn from simulated chlorinated vanadium slag by molten salt electrolysis

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Tailings from the vanadium extraction process are discarded each year as waste, which contain approximately 30wt% of Fe. In our previous work, we extracted Fe and Mn from vanadium slag, and Fe and Mn existed in the form of FeCl2 and MnCl2 after chlorination by NH4Cl to achieve effective and green usage of waste containing Fe and Mn. In this work, square wave voltammetry (SWV) and cyclic voltammetry (CV) were applied to investigate the electrochemical behaviors of Fe2+ and Mn2+ in NaCl-KCl melt at 800°C. The reduction processes of Fe2+ and Mn2+ were found to involve one step. The diffusion coefficients of FeCl2 and MnCl2 in molten salt of eutectic mixtures NaCl-KCl molten salt were measured. The electrodeposition of Fe and Mn were performed using two electrodes at a constant cell voltage. The Mn/Fe mass ratio of the electrodeposited product in NaCl-KCl-2.13wt%FeCl2-1.07wt%MnCl2 was 0.0625 at 2.3 V. After the electrolysis of NaCl-KCl-2.13wt%FeCl2-1.07wt%MnCl2 melted at 2.3 V, the electrolysis was again started under 3.0 V and the Mn/Fe mass ratio of the electrodeposited product was 36.4. This process provides a novel method to effectively separate Fe and Mn from simulated chlorinated vanadium slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aarabi-Karasgani, F. Rashchi, N. Mostoufi, and E. Vahidi, Leaching of vanadium from LD converter slag using sulfuric acid, Hydrometallurgy, 102(2010), No. 1–4, p. 14.

    Article  CAS  Google Scholar 

  2. Q.B. Song, J.H. Li, and X.L. Zeng, Minimizing the increasing solid waste through zero waste strategy, J. Cleaner Prod., 104(2015), p. 199.

    Article  Google Scholar 

  3. T. Jiang, J. Wen, M. Zhou, and X.X. Xue, Phase evolutions, microstructure and reaction mechanism during calcification roasting of high chromium vanadium slag, J Alloys Compd., 742(2018), p. 402.

    CAS  Google Scholar 

  4. X.S. Li, B. Xie, G.E. Wang, and X.J. Li, Oxidation process of low-grade vanadium slag in presence of Na2CO3, Trans. Non-ferrous Met. Soc. China, 21(2011), No. 8, p. 1860.

    Article  CAS  Google Scholar 

  5. H.Y. Li, H.X. Fang, K. Wang, W. Zhou, Z. Yang, X.M. Yan, W.S. Ge, Q.W. Li, and B. Xie, Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting-water leaching, Hydrometallurgy, 156(2015), p. 124.

    Article  CAS  Google Scholar 

  6. G. Wang, J. Diao, L. Liu, M. Li, H.Y. Li, G. Li, and B. Xie, Highly efficient utilization of hazardous vanadium extraction tailings containing high chromium concentrations by carbothermic reduction, J. Cleaner Prod., 237(2019), art. No. 117832.

  7. X.S. Li and B. Xie, Extraction of vanadium from high calcium vanadium slag using direct roasting and soda leaching, Int. J. Miner. Metall. Mater., 19(2012), No. 7, p. 595.

    Article  CAS  Google Scholar 

  8. J.Y. Xiang, Q.Y. Huang, X.W. Lv, and C.G. Bai, Multistage utilization process for the gradient-recovery of V, Fe and Ti from vanadium-bearing converter slag, J. Hazard. Mater., 336(2017), p. 1.

    Article  CAS  Google Scholar 

  9. S.N. Wang, H. Du, S.L. Zheng, B. Liu, H. Yan, and Y. Zhang, New technology from sodium vanadate to vanadium oxide by calcification and carboninztion-ammonium process, CIESC J., 68(2017), No. 7, p. 2781.

    CAS  Google Scholar 

  10. J.Y. Xiang, Q.Y. Huang, W. Lv, G.S. Pei, X.W. Lv, and C.G. Bai, Recovery of tailings from the vanadium extraction process by carbothermic reduction method: Thermodynamic, experimental and hazardous potential assessment, J. Hazard. Mater., 357(2018), p. 128.

    Article  CAS  Google Scholar 

  11. G. Wang, M.M. Lin, J. Diao, H.Y. Li, B. Xie, and G. Li, Novel strategy for green comprehensive utilization of vanadium slag with high-content chromium, ACS Sustainable Chem. Eng., 7(2019), No. 21, p. 18133.

    Article  CAS  Google Scholar 

  12. E. Ma, R.X. Lu, and Z.M. Xu, An efficient rough vacuum-chlorinated separation method for the recovery of indium from waste liquid crystal display panels, Green Chem., 14(2012), No. 12, p. 3395.

    Article  CAS  Google Scholar 

  13. G.C. Du, C.L. Fan, H.T. Yang, and Q.S. Zhu, Selective extraction of vanadium from pre-oxidized vanadium slag by carbo-chlorination in fluidized bed reactor, J. Cleaner Prod., 237(2019), art. No. 117765.

  14. Y. Sun, Comprehensive Utilization of Vanadium-bearing Titanomagnetite with Extracting Vanadium by Selective Chlorination Technology [Dissertation], Northeastern University, Shenyang, 2015, p. 61.

    Google Scholar 

  15. S.Y. Liu, S.J. Li, S. Wu, L.J. Wang, and K.C. Chou, A novel method for vanadium slag comprehensive utilization to synthesize Zn-Mn ferrite and Fe-V-Cr alloy, J. Hazard. Mater., 354(2018), p. 99.

    Article  CAS  Google Scholar 

  16. S.Y. Liu, L.J. Wang, and K.C. Chou, Selective chlorinated extraction of iron and manganese from vanadium slag and their application to hydrothermal synthesis of MnFe2O4, ACS Sustainable Chem. Eng., 5(2017), No. 11, p. 10588.

    Article  CAS  Google Scholar 

  17. S.Y. Liu, L.J. Wang, K.C. Chou, and R.V. Kumar, Electrolytic preparation and characterization of VCr alloys in molten salt from vanadium slag, J. Alloys Compd., 803(2019), p. 875.

    Article  CAS  Google Scholar 

  18. S.Y. Liu, L.J. Wang, and K.C. Chou, A novel process for simultaneous extraction of iron, vanadium, manganese, chromium, and titanium from vanadium slag by molten salt electrolysis, Ind. Eng. Chem. Res., 55(2016), No. 50, p. 12962.

    Article  CAS  Google Scholar 

  19. Y.B. Zhang, M.H. Du, B.B. Liu, Z.J. Su, G.H. Li, and T. Jiang, Separation and recovery of iron and manganese from high-iron manganese oxide ores by reduction roasting and magnetic separation technique, Sep. Sci. Technol., 52(2017), No. 7, p. 1321.

    Article  CAS  Google Scholar 

  20. A.B. Suchkov, T.N. Ermakova, L.V. Ryumina, and Z.A. Tubyshkina, On the production of iron powder by electrolysis of ore concentrates in fused salts: Direct iron production and powder metallurgy, Metallurgiya, 1974, No. 1, p. 148.

    Google Scholar 

  21. S. Licht and B.H. Wang, High solubility pathway for the carbon dioxide free production of iron, Chem. Commun., 46(2010), No. 37, p. 7004.

    Article  CAS  Google Scholar 

  22. G.M. Haarberg, O.S. Burheim, H. Karoliussen, E. Kvalheim, A.M. Martinez, T. Murakami, S. Pietrzyk, and D.J. Zhao, Middle Temperature Electrolysis for the Production of Iron in Molten Salts, Project report, Norwegian University of Science and Technology, Trondheim, 2006.

    Google Scholar 

  23. G.M. Haarberg, E. Kvalheim, and S. Rolseth, Electrochemical behaviour of dissolved iron species in molten salts, [in] Proceedings of The Electrochemical Society, ECS Proceedings Volumes, Vol. 2004–24, Honolulu, 2004, p. 990.

    Google Scholar 

  24. G.M. Haarberg, E. Kvalheim, S. Rolseth, T. Murakami, S. Pietrzyk, and S.L. Wang, Electrodeposition of iron from molten mixed chloride/fluoride electrolytes, ECS Trans., 3(2007), No. 35, p. 341.

    Article  CAS  Google Scholar 

  25. Y. Castrillejo, A.M. Martínez, M. Vega, E. Barrado, and G. Picard, Electrochemical study of the properties of iron ions in ZnCl2 + 2NaCl melt at 450°C, J. Electroanal. Chem., 397(1995), No. 1–2, p. 139.

    Article  Google Scholar 

  26. S.Z. Duan, P. Dudley, and D. Inman, Voltammetric studies of iron in molten MgCl2+NaCl+KCl: Part I. The reduction of Fe(II), J. Electroanal. Chem. Interfacial Electrochem., 142(1982), No. 1–2, p. 215.

    Google Scholar 

  27. D. Inman, J.C. Legey, and R. Spencer, I, A chronopotentiometric study of iron in LiCl-KCl, J. Appl. Electrochem., 8(1978), No. 3, p. 269.

    Article  CAS  Google Scholar 

  28. B. Khalaghi, E. Kvalheim, M. Tokushige, L.D. Teng, S. Seetharaman, and G.M. Haarberg, Electrochemical behaviour of dissolved iron chloride in KCl+LiCl+NaCl melt at 550°C, ECS Trans., 64(2014), No. 4, p. 301.

    Article  CAS  Google Scholar 

  29. S.J. Xiao, W. Liu, and L. Gao, Cathodic process of manganese (II) in NaCl-KCl melt, Ionics, 22(2016), No. 12, p. 2387.

    Article  CAS  Google Scholar 

  30. D. Quaranta, L. Massot, M. Gibilaro, E. Mendes, J. Serp, and P. Chamelot, Zirconium(IV) electrochemical behavior in molten LiF-NaF, Electrochim. Acta, 265(2018), p. 586.

    Article  CAS  Google Scholar 

  31. X.L. Zou, X.G. Lu, C.H. Li, and Z.F. Zhou, A direct electrochemical route from oxides to Ti-Si intermetallics, Electrochim. Acta, 55(2010), No. 18, p. 5173.

    Article  CAS  Google Scholar 

  32. J.S. Yao, L.T. Yang, and Z.H. Zhou, The cathodic process of Mn(II) in the molten magnesium electrolyte containing Fe(II), Min. Metall. Eng., 9(1989), No. 1, p. 51.

    CAS  Google Scholar 

  33. K. Ye, M.L. Zhang, Y. Chen, W. Han, Y.D. Yan, S.Q. Wei, and L.J. Chen, Study on the preparation of Mg-Li-Mn alloys by electrochemical codeposition from LiCl-KCl-MgCl2-MnCl2 molten salt, J. Appl. Electrochem., 40(2010), No. 7, p. 1387.

    Article  CAS  Google Scholar 

  34. Y.S. Yang, M.L. Zhang, W. Han, P.Y. Sun, B. Liu, H.L. Jiang, T. Jiang, S.M. Peng, M. Li, K. Ye, and Y.D. Yan, Selective electrodeposition of dysprosium in LiCl-KCl-GdCl3-DyCl3 melts at magnesium electrodes: Application to separation of nuclear wastes, Electrochim. Acta, 118(2014), p. 150.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51904286, 51922003, 51774027, and 51734002) and the China Postdoctoral Science Foundation (No. 2019M650848).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-jun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Sy., Zhen, Yl., He, Xb. et al. Recovery and separation of Fe and Mn from simulated chlorinated vanadium slag by molten salt electrolysis. Int J Miner Metall Mater 27, 1678–1686 (2020). https://doi.org/10.1007/s12613-020-2140-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2140-y

Keywords

Navigation