Skip to main content
Log in

In vitro bioactivity and corrosion of PLGA/hardystonite composite-coated magnesium-based nanocomposite for implant applications

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

A type of polymer/ceramic coating was introduced on a magnesium-based nanocomposite, and the nanocomposite was evaluated for implant applications. The microstructure, corrosion, and bioactivity of the coated and uncoated samples were assessed. Mechanical alloying followed by sintering was applied to fabricate the Mg-3Zn-0.5Ag-15NiTi nanocomposite substrate. Moreover, different contents of poly(lactic-co-glycolic acid) (PLGA) coatings were studied, and 10wt% of PLGA content was selected. The scanning electron microscopy (SEM) images of the bulk nanocomposite showed an acceptable homogenous dispersion of the NiTi nanoparticles (NPs) in the Mg-based matrix. In the in vitro bioactivity evaluation, following the immersion of the uncoated and coated samples in a simulated body fluid (SBF) solution, the Ca/P atomic ratio demonstrated that the apatite formation amount on the coated sample was greater than that on the uncoated nanocomposite. Furthermore, assessing the corrosion resistance indicated that the coatings on the Mg-based substrate led to a corrosion current density (icorr) that was considerably lower than that of the substrate. Such a condition revealed that the coating would provide an obstacle for the corrosion. Based on this study, the PLGA/hardystonite (HT) composite-coated Mg-3Zn-0.5Ag-15NiTi nanocomposite may be suitably applied as an orthopedic implant biomaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Breen and D.J. Stoker, Titanium lines: A manifestation of metallosis and tissue response to titanium alloy megaprostheses at the knee, Clin. Radiol., 47(1993), No. 4, p. 274.

    Article  CAS  Google Scholar 

  2. M. Razzaghi, M. Kasiri-Asgarani, H.R. Bakhsheshi-Rad, and H. Ghayour, Microstructure, mechanical properties, and in-vitro biocompatibility of nano-NiTi reinforced Mg-3Zn-0.5Ag alloy: Prepared by mechanical alloying for implant applications, Composites Part B, 190(2020), art. No. 107947.

  3. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 27(2006), No. 9, p. 1728.

    Article  CAS  Google Scholar 

  4. F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, and F. Feyerabend, Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid State Mater. Sci., 12(2008), No. 5–6, p. 63.

    Article  CAS  Google Scholar 

  5. H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir, A. Ourdjini, M. Medraj, M. Daroonparvar, and E. Hamzah, Mechanical and bio-corrosion properties of quaternary Mg-Ca-Mn-Zn alloys compared with binary Mg-Ca alloys, Mater. Des., 53(2014), p. 283.

    Article  CAS  Google Scholar 

  6. A.V. Koltygin, V.E. Bazhenov, R.S. Khasenova, A.A. Komissarov, A.I. Bazlov, and V.A. Bautin, Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 858.

    Article  CAS  Google Scholar 

  7. Y.Z. Ma, C.L. Yang, Y.J. Liu, F.S. Yuan, S.S. Liang, H.X. Li, and J.S. Zhang, Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg-xZn-0.2Ca alloys, J. Miner. Metall. Mater., 26(2019), No. 10, p. 1274.

    Article  CAS  Google Scholar 

  8. Y. Sun, B.P. Zhang, Y. Wang, L. Geng, and X.H. Jiao, Preparation and characterization of a new biomedical Mg-Zn-Ca alloy, Mater. Des., 34(2012), p. 58.

    Article  CAS  Google Scholar 

  9. H.R. Bakhsheshi-Rad, E. Hamzah, M.P. Staiger, G.J. Dias, Z. Hadisi, M. Saheban, and M. Kashefian, Drug release, cytocompatibility, bioactivity, and antibacterial activity of doxycycline loaded Mg-Ca-TiO2 composite scaffold, Mater. Des., 139(2018), p. 212.

    Article  CAS  Google Scholar 

  10. D.R. Monteiro, L.F. Gorup, A.S. Takamiya, A.C. Ruvollo-Filho, E.R. de Camargo, and D.B. Barbosa, The growing importance of materials that prevent microbial adhesion: Antimicrobial effect of medical devices containing silver, Int. J. Antimicrob. Agents, 34(2009), No. 2, p. 103.

    Article  CAS  Google Scholar 

  11. R. Radha and D. Sreekanth, Insight of magnesium alloys and composites for orthopedic implant applications — A review, J. Magnesium Alloys, 5(2017), No. 3, p. 286.

    Article  CAS  Google Scholar 

  12. H.X. Li, S.K. Qin, Y.Z. Ma, J. Wang, Y.J. Liu, and J.S. Zhang, Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg-Zn-Ca alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 800.

    Article  CAS  Google Scholar 

  13. A.H.M. Sanchez, B.J.C. Luthringer, F. Feyerabend, and R. Willumeit, Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review, Acta Biomater., 13(2015), p. 16.

    Article  CAS  Google Scholar 

  14. H. Du, Z.J. Wei, X.W. Liu, and E.L. Zhang, Effects of Zn on the microstructure, mechanical property and bio-corrosion property of Mg-3Ca alloys for biomedical application, Mater. Chem. Phys., 125(2011), No. 3, p. 568.

    Article  CAS  Google Scholar 

  15. Y.M. Zhu, A.J. Morton, and J.F. Nie, Improvement in the age-hardening response of Mg-Y-Zn alloys by Ag additions, Scripta Mater., 58(2008), No. 7, p. 525.

    Article  CAS  Google Scholar 

  16. Q.D. Wang, J. Chen, Z. Zhao, and S.M. He, Microstructure and super high strength of cast Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy, Mater. Sci. Eng. A, 528(2010), No. 1, p. 323.

    Article  CAS  Google Scholar 

  17. Ş. Açıkgöz, H. Şevik, and S.C. Kurnaz, Influence of silver addition on the microstructure and mechanical properties of squeeze cast Mg-6Al-1Sn-0.3Mn-0.3Ti, J. Alloys Compd., 509(2011), No. 27, p. 7368.

    Article  CAS  Google Scholar 

  18. X.B. Zhang, Z.X. Ba, Z.Z. Wang, X.C. He, C. Shen, and Q. Wang, Influence of silver addition on microstructure and corrosion behavior of Mg-Nd-Zn-Zr alloys for biomedical application, Mater. Lett., 100(2013), p. 188.

    Article  CAS  Google Scholar 

  19. M. Mandal, A.P. Moon, G. Deo, C.L. Mendis, and K. Mondal, Corrosion behavior of Mg-2.4Zn alloy micro-alloyed with Ag and Ca, Corros. Sci., 78(2014), p. 172.

    Article  CAS  Google Scholar 

  20. M. Razzaghi, M. Kasiri-Asgarani, H.R. Bakhsheshi-Rad, and H. Ghayour, In vitro degradation, antibacterial activity and cytotoxicity of Mg-3Zn-xAg nanocomposites synthesized by mechanical alloying for implant applications, J. Mater. Eng. Perform., 28(2019), No. 3, p. 1441.

    Article  CAS  Google Scholar 

  21. V. Kavimani, K.S. Prakash, and T. Thankachan, Experimental investigations on wear and friction behavior of SiC@r-GO reinforced Mg matrix composites produced through solvent-based powder metallurgy, Composites Part B, 162(2019), p. 508.

    Article  CAS  Google Scholar 

  22. S. Wakeel, V. Manakari, G. Parande, M.S. Kujur, A.A. Khan, and M. Gupta, Synthesis and mechanical response of NiTi SMA nanoparticle reinforced Mg composites synthesized through microwave sintering process, Mater. Today: Proc., 5(2018), No. 14, p. 28203.

    CAS  Google Scholar 

  23. Y.F. Zheng, X.N. Gu, Y.L. Xi, and D.L. Chai, In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy, Acta Biomater., 6(2010), No. 5, p. 1783.

    Article  CAS  Google Scholar 

  24. Z. Esen, TiNi reinforced magnesium composites by powder metallurgy, [in] W.H. Sillekens, S.R. Agnew, N.R. Neelameggham, S.N. Mathaudhu, eds., Magnesium Technology 2011, Springer, Cham, Switzerland, 2011, p. 457.

    Google Scholar 

  25. W. Guo, H. Kato, S.L. Lü, and S.S. Wu, Porous NiTi particle dispersed Mg-Zn-Ca bulk metallic glass matrix composites, Materials, 11(2018), No. 10, p. 1959.

    Article  CAS  Google Scholar 

  26. Z. Esen, The effect of processing routes on the structure and properties of magnesium-TiNi composites, Mater. Sci. Eng. A, 558(2012), p. 632.

    Article  CAS  Google Scholar 

  27. Y. Wang, Z.H. Wu, H. Zhou, Z.D. Liao, and H.F. Zhang, Corrosion properties in a simulated body fluid of Mg/β-TCP composites prepared by powder metallurgy, Int. J. Miner. Metall. Mater., 19(2012), No. 11, p. 1040.

    Article  CAS  Google Scholar 

  28. M.D. Pereda, C. Alonso, L. Burgos-Asperilla, J.A. del Valle, O.A. Ruano, P. Perez, and M.A.F.L. de Mele, Corrosion inhibition of powder metallurgy Mg by fluoride treatments, Acta Biomater., 6(2010), No. 5, p. 1772.

    Article  CAS  Google Scholar 

  29. M.K. Datta, D.-T. Chou, D. Hong, P. Saha, S.J. Chung, B. Lee, A. Sirinterlikci, M. Ramanathan, A. Roy, and P.N. Kumta, Structure and thermal stability of biodegradable Mg-Zn-Ca based amorphous alloys synthesized by mechanical alloying, Mater. Sci. Eng. B, 176(2011), No. 20, p. 1637.

    Article  CAS  Google Scholar 

  30. Y.H. Gao, A. Yerokhin, and A. Matthews, Deposition and evaluation of duplex hydroxyapatite and plasma electrolytic oxidation coatings on magnesium, Surf. Coat. Technol., 269(2015), p. 170.

    Article  CAS  Google Scholar 

  31. N. Li and Y.F. Zheng, Novel magnesium alloys developed for biomedical application: A review, J. Mater. Sci. Technol., 29(2013), No. 6, p. 489.

    Article  CAS  Google Scholar 

  32. H.R. Bakhsheshi-Rad, E. Hamzah, M. Daroonparvar, M.A.M. Yajid, and M. Medraj, Fabrication and corrosion behavior of Si/HA nano-composite coatings on biodegradable Mg-Zn-Mn-Ca alloy, Surf. Coat. Technol., 258(2014), p. 1090.

    Article  CAS  Google Scholar 

  33. H.R. Bakhsheshi-Rad, E. Hamzah, A.F. Ismail, M. Aziz, M. Kasiri-Asgarani, H. Ghayour, M. Razzaghi, and Z. Hadisi, In vitro corrosion behavior, bioactivity, and antibacterial performance of the silver-doped zinc oxide coating on magnesium alloy, Mater. Corros., 68(2017), No. 11, p. 1228.

    Article  CAS  Google Scholar 

  34. E.V. Parfenov, A. Yerokhin, R.R. Nevyantseva, M.V. Gorbatkov, C.-J. Liang, and A. Matthews, Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling, Surf. Coat. Technol., 269(2015), p. 2.

    Article  CAS  Google Scholar 

  35. T. Hanas, T.S.S. Kumar, G. Perumal, and M. Doble, Tailoring degradation of AZ31 alloy by surface pre-treatment and electrospun PCL fibrous coating, Mater. Sci. Eng. C, 65(2016), p. 43.

    Article  CAS  Google Scholar 

  36. G.X. Liang and R. Schulz, Synthesis of binary Mg-based alloys by mechanical alloying, J. Metastable Nanocryst. Mater., 12(2002), p. 93.

    Google Scholar 

  37. E.M. Salleh, S. Ramakrishnan, and Z. Hussain, Synthesis of biodegradable Mg-Zn alloy by mechanical alloying: Effect of milling time, Procedia Chem., 19(2016), p. 525.

    Article  CAS  Google Scholar 

  38. D.R. Askeland, P.P. Phulé, W.J. Wright, and D.K. Bhatacharya, The Science and Engineering of Materials, Springer, Dordrecht, 2003.

    Google Scholar 

  39. ASTM International, ASTM G59-97: Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, ASTM International, West Conshohocken, 2009.

    Google Scholar 

  40. H.R. Bakhsheshi-Rad, M. Akbari, A.F. Ismail, M. Aziz, Z. Hadisi, E. Pagan, M. Daroonparvar, and X.B. Chen, Coating biodegradable magnesium alloys with electrospun poly-L-lactic acid-åkermanite-doxycycline nanofibers for enhanced biocompatibility, antibacterial activity, and corrosion resistance, Surf. Coat. Technol., 377(2019), art. No. 124898.

  41. L. Yang and E.L. Zhang, Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application, Mater. Sci. Eng. C, 29(2009), No. 5, p. 1691.

    Article  CAS  Google Scholar 

  42. M.L. Zheludkevich, R. Serra, M.F. Montemor, I.M.M. Salvado, and M.G.S. Ferreira, Corrosion protective properties of nanostructured sol-gel hybrid coatings to AA2024-T3, Surf. Coat. Technol., 200(2006), No. 9, p. 3084.

    Article  CAS  Google Scholar 

  43. M. Diba, O.-M. Goudouri, F. Tapia, and A.R. Boccaccini, Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications, Curr. Opin. Solid State Mater. Sci., 18(2014), No. 3, p. 147.

    Article  CAS  Google Scholar 

  44. Z.M. Shi, M. Liu, and A. Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation, Corros. Sci., 52(2010), No. 2, p. 579.

    Article  CAS  Google Scholar 

  45. B.S. Liu, Y.F. Kuang, Y.S. Chai, D.Q. Fang, M.G. Zhang, and Y.H. Wei, Degradation research of protective coating on AZ91D Mg alloy components via simulated contamination, J. Magnesium Alloys, 4(2016), No. 3, p. 220.

    Article  CAS  Google Scholar 

  46. H.R. Bakhsheshi-Rad, E. Hamzah, A.F. Ismail, Z. Sharer, M.R. Abdul-Kadir, M. Daroonparvar, S.N. Saud, and M. Medraj, Synthesis and corrosion behavior of a hybrid bioceramic-biopolymer coating on biodegradable Mg alloy for orthopedic implants, J. Alloys Compd., 648(2015), p. 1067.

    Article  CAS  Google Scholar 

  47. H.R. Bakhsheshi-Rad, E. Hamzah, A.F. Ismail, M. Daroonparvar, M. Kasiri-Asgarani, S. Jabbarzare, and M. Medraj, Microstructural, mechanical properties and corrosion behavior of plasma sprayed NiCrAlY/nano-YSZ duplex coating on Mg-1.2Ca-3Zn alloy, Ceram. Int., 41(2015), No. 10, p. 15272.

    Article  CAS  Google Scholar 

  48. J. Degner, F. Singer, L. Cordero, A.R. Boccaccini, and S. Virtanen, Electrochemical investigations of magnesium in DMEM with biodegradable polycaprolactone coating as corrosion barrier, Appl. Surf. Sci., 282(2013), p. 264.

    Article  CAS  Google Scholar 

  49. H.R. Bakhsheshi-Rad, X.B. Chen, A.F. Ismail, M. Aziz, E. Abdolahi, and F. Mahmoodiyan, Improved antibacterial properties of an Mg-Zn-Ca alloy coated with chitosan nanofibers incorporating silver sulfadiazine multiwall carbon nanotubes for bone implants, Polym. Adv. Technol., 30(2019), No. 5, p. 1333.

    Article  CAS  Google Scholar 

  50. H.R. Pant, P. Risal, C.H. Park, L.D. Tijing, Y.J. Jeong, and C.S. Kim, Core-shell structured electrospun biomimetic composite nanofibers of calcium lactate/nylon-6 for tissue engineering, Chem. Eng. J., 221(2013), p. 90.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We wish to thank the support provided by Islamic Azad University of Najafabad, Iran for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masoud Kasiri-Asgarani or Hamid Reza Bakhsheshi-Rad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razzaghi, M., Kasiri-Asgarani, M., Bakhsheshi-Rad, H.R. et al. In vitro bioactivity and corrosion of PLGA/hardystonite composite-coated magnesium-based nanocomposite for implant applications. Int J Miner Metall Mater 28, 168–178 (2021). https://doi.org/10.1007/s12613-020-2072-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2072-6

Keywords

Navigation