Skip to main content

Advertisement

Log in

Selective reduction of carbon dioxide into amorphous carbon over activated natural magnetite

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Natural magnetite formed by the isomorphism substitutions of transition metals, including Fe, Ti, Co, etc., was activated by mechanical grinding followed by H2 reduction. The temperature-programmed reduction of hydrogen (H2-TPR) and temperature-programmed surface reaction of carbon dioxide (CO2-TPSR) were carried out to investigate the processes of oxygen loss and CO2 reduction. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS). The results showed that the stability of spinel phases and oxygen-deficient degree significantly increased after natural magnetite was mechanically milled and reduced in H2 atmosphere. Meanwhile, the activity and selectivity of CO2 reduction into carbon were enhanced. The deposited carbon on the activated natural magnetite was confirmed as amorphous. The amount of carbon after CO2 reduction at 300°C for 90 min over the activated natural magnetite was 2.87wt% higher than that over the natural magnetite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.Q. Chen and B.L. Lin, A simple framework for quantifying electrochemical CO2 fixation, Joule, 2(2018), No. 4, p. 594.

    Article  CAS  Google Scholar 

  2. A.S. Agarwal, Y.M. Zhai, D. Hill, and N. Sridhar, The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility, ChemSusChem, 4(2011), No. 9, p. 1301.

    Article  CAS  Google Scholar 

  3. D. Gao, R.M. Arán-Ais, H.S. Jeon, and B. Roldan Cuenya, Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products, Nat. Catal., 2(2019), No. 3, p. 198.

    Article  CAS  Google Scholar 

  4. X. Tan, H.A. Tahini, H. Arandiyan, and S.C. Smith, Electrocatalytic reduction of carbon dioxide to methane on single transition metal atoms supported on a defective boron nitride monolayer: First principle study, Adv. Theory Simul., 2(2019), No. 3, p. 1800094.

    Article  Google Scholar 

  5. P. Chen, B. Cui, Y.M. Bu, Z.F. Yang, and Y.Y. Wang, Synthesis and characterization of mesoporous and hollow-mesoporous MxFe3−xO4 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) microspheres for microwave-triggered controllable drug delivery, J. Nanopart. Res., 19(2017), No. 12, p. 398.

    Article  Google Scholar 

  6. H.P. He, Y.H. Zhong, X.L. Liang, W. Tan, J.X. Zhu, and C.Y. Wang, Natural Magnetite: An efficient catalyst for the degradation of organic contaminant, Sci. Rep., 5(2015), No. 1, p. 10139.

    Article  CAS  Google Scholar 

  7. M. Munoz, Z.M. de Pedro, J.A. Casas, and J.J. Rodriguez, Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation — A review, Appl. Catal. B, 176–177(2015), p. 249.

    Article  Google Scholar 

  8. M.S. Fu, L.S. Chen, and S.Y. Chen, Preparation, structure of doped ferrite and its performance of decomposition of carbon dioxide to carbon, Chem. J. Chin. Univ., 26(2005), No. 12, p. 2279.

    CAS  Google Scholar 

  9. L.J. Ma, L.S. Chen, and S.Y. Chen, Study of the CO2 decomposition over doped Ni-ferrites, J. Phys. Chem. Solids, 68(2007), No. 7, p. 1330.

    Article  CAS  Google Scholar 

  10. L.J. Ma, L.S. Chen, and S.Y. Chen, Study on the cycle decomposition of CO2 over NiCr0.08Fe1.92O4 and the microstructure of products, Mater. Chem. Phys., 105(2007), No. 1, p. 122.

    Article  CAS  Google Scholar 

  11. L.J. Ma, L.S. Chen, and S.Y. Chen, Studies on redox H2-CO2 cycle on CoCrxFe2−xO4, Solid State Sci., 11(2009), No. 1, p. 176.

    Article  Google Scholar 

  12. L.J. Ma, L.S. Chen, and S.Y. Chen, Study on the characteristics and activity of Ni-Cu-Zn ferrite for decomposition of CO2, Mater. Chem. Phys., 114(2009), No. 2–3, p. 692.

    Article  CAS  Google Scholar 

  13. Y. Tamaura and M. Tahata, Complete Reduction of carbon-dioxide to carbon using cation-excess magnetite, Nature, 346(1990), No. 6281, p. 255.

    Article  CAS  Google Scholar 

  14. C.L. Zhang, T.H. Wu, H.M. Yang, Y.Z. Jiang, and S.Y. Peng, Reduction of carbon-dioxide to carbon with active cation excess magnetite, Chem. J. Chin. Univ., 16(1995), No. 6, p. 955.

    CAS  Google Scholar 

  15. H.M. Yang, C.L. Zhang, T.H. Wu, Y.Z. Jiang, and S.Y. Peng, Preparation of Fe3+δO4 and their complete decomposition of CO2 to carbon, Acta. Chim. Sinica, 53(1995), No. 11, p. 1101.

    Google Scholar 

  16. S. Álvarez-Torrellas, M. Munoz, V. Mondejar, Z.M. de Pedro, and J.A. Casas, Boosting the catalytic activity of natural magnetite for wet peroxide oxidation, Environ. Sci. Pollut. Res., 27(2020), No. 2, p. 1176.

    Article  Google Scholar 

  17. E. Yamasue, H. Yamaguchi, H. Nakaoku, H. Okumura, and K.N. Ishihara, Carbon dioxide reduction into carbon by mechanically milled wustite, J. Mater. Sci., 42(2007), No. 13, p. 5196.

    Article  CAS  Google Scholar 

  18. E. Yamasue, H. Yamaguchi, H. Okumura, and K.N. Ishihara, Decomposition of carbon dioxide using mechanically-milled magnetite, J. Alloys Compd., 434(2007), p. 803.

    Article  Google Scholar 

  19. J.S. Kim and J.R. Ahn, Characterization of wet processed (Ni, Zn)-ferrites for CO2 decomposition, J. Mater. Sci., 36(2001), No. 19, p. 4813.

    Article  CAS  Google Scholar 

  20. J.S. Kim, J.R. Ahn, C.W. Lee, Y. Murakami, and D. Shindo, Morphological properties of ultra-fine (Ni, Zn)-ferrites and their ability to decompose CO2, J. Mater. Chem., 11(2001), No. 12, p. 3373.

    Article  CAS  Google Scholar 

  21. C. Nordhei, K. Mathisen, I. Bezverkhyy, and D. Nicholson, Decomposition of carbon dioxide over the putative cubic spinel nanophase cobalt, nickel, and zinc ferrites, J. Phys. Chem. C, 112(2008), No. 16, p. 6531.

    Article  CAS  Google Scholar 

  22. C. Nordhei, K. Mathisen, O. Safonova, W. van Beek, and D.G. Nicholson, Decomposition of carbon dioxide at 500°C over reduced iron, cobalt, nickel, and zinc ferrites: A combined XANES-XRD study, J. Phys. Chem. C, 113(2009), No. 45, p. 19568.

    Article  CAS  Google Scholar 

  23. L.S. Chen, S.Y. Chen, and G.L. Lu, Study the structure stability of NiFe2−xCrxO4 (x=0, 0.08) during H2/CO2 cycle reaction, J. Mater. Sci., 41(2006), No. 19, p. 6465.

    Article  CAS  Google Scholar 

  24. M.H. Khedr and A.A. Farghali, Microstructure, kinetics and mechanisms of CO2 catalytic decomposition over freshly reduced nano-crystallite CuFe2O4 at 400–600°C, Appl. Catal. B, 61(2005), No. 3–4, p. 219.

    Article  CAS  Google Scholar 

  25. M.H. Khedr, A.A. Omar, and S.A. Abdel-Moaty, Reduction of carbon dioxide into carbon by freshly reduced CoFe2O4 nanoparticles, Mater. Sci. Eng. A, 432(2006), No. 1–2, p. 26.

    Article  Google Scholar 

  26. T. Kodama, Y. Kitayama, M. Tsuji, and Y. Tamaura, Methanation of CO2 using ultrafine NixFe3−xO4, Energy, 22(1997), No. 2–3, p. 183.

    Article  CAS  Google Scholar 

  27. D.G. Streets, K.J. Jiang, X.L. Hu, J.E. Sinton, X.Q. Zhang, D.Y. Xu, M.Z. Jacobson, and J. E. Hansen, Climate change — Recent reductions in China’s greenhouse gas emissions, Science, 294(2001), No. 5548, p. 1835.

    Article  CAS  Google Scholar 

  28. J. Tollefson, Panel negotiates climate ‘synthesis report’, Nature, 450(2007), No. 7168, p. 327.

    Google Scholar 

  29. M. Tsuji, T. Yamamoto, Y. Tamaura, T. Kodama, and Y. Kitayama, Catalytic acceleration for CO2 decomposition into carbon by Rh, Pt or Ce impregnation onto Ni(II)-bearing ferrite, Appl. Catal. A, 142(1996), No. 1, p. 31.

    Article  CAS  Google Scholar 

  30. H.C. Shin, S.C. Choi, K.D. Jung, and S.H. Han, Mechanism of M ferrites (M = Cu and Ni) in the CO2 decomposition reaction, Chem. Mater., 13(2001), No. 4, p. 1238.

    Article  CAS  Google Scholar 

  31. C.L. Zhang, S. Li, T.H. Wu, and S.Y. Peng, Reduction of carbon dioxide into carbon by the active wustite and the mechanism of the reaction, Mater. Chem. Phys., 58(1999), No. 2, p. 139.

    Article  CAS  Google Scholar 

  32. C.L. Zhang, S. Li, L.J. Wang, T.H. Wu, and S.Y. Peng, Studies on the decomposition of carbon dioxide into carbon with oxygen-deficient magnetite I. Preparation, characterization of magnetite, and its activity of decomposing carbon dioxide, Mater. Chem. Phys., 62(2000), No. 1, p. 44.

    Article  CAS  Google Scholar 

  33. C.L. Zhang, S. Li, L.J. Wang, T.H. Wu, and S.Y. Peng, Studies on the decomposing carbon dioxide into carbon with oxygen-deficient magnetite II. The effects of properties of magnetite on activity of decomposition CO2 and mechanism of the reaction, Mater. Chem. Phys., 62(2000), No. 1, p. 52.

    Article  CAS  Google Scholar 

  34. H.C. Shin, J.H. Oh, J.C. Lee, S.H. Han, and S.C. Choi, The carbon dioxide decomposition reaction with (NixCu1−x)Fe2O4 solid solution, Phys. Status Solidi A, 189(2002), No. 3, p. 741.

    Article  CAS  Google Scholar 

  35. C.R. Lin, C.H. Su, C.Y. Chang, C.H. Hung, and Y.F. Huang, Synthesis of nanosized flake carbons by RF-chemical vapor method, Surf. Coat. Technol., 200(2006), No. 10, p. 3190.

    Article  CAS  Google Scholar 

  36. I.D. Rosca, F. Watari, M. Uo, and T. Akaska, Oxidation of multiwalled carbon nanotubes by nitric acid, Carbon, 43(2005), No. 15, p. 3124.

    Article  CAS  Google Scholar 

  37. M. Keiluweit, P.S. Nico, M.G. Johnson, and M. Kleber, Dynamic molecular structure of plant biomass-derived black carbon (biochar), Environ. Sci. Technol., 44(2010), No. 4, p. 1247.

    Article  CAS  Google Scholar 

  38. L.S. Jia, J.J. Li, and W.P. Fang, Enhanced visible-light active C and Fe co-doped LaCoO3 for reduction of carbon dioxide, Catal. Commun., 11(2009), No. 2, p. 87.

    Article  CAS  Google Scholar 

  39. M. Tsuji, T. Kodama, T. Yoshida, Y. Kitayama, and Y. Tamaura, Preparation and CO2 methanation activity of an ultrafine Ni(II) ferrite catalyst, J. Catal., 164(1996), No. 2, p. 315.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFB 0600904). The authors gratefully acknowledge the support of the Analytical and Test Center of Sichuan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-qing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Zq., Zheng, J., Wang, Y. et al. Selective reduction of carbon dioxide into amorphous carbon over activated natural magnetite. Int J Miner Metall Mater 28, 231–237 (2021). https://doi.org/10.1007/s12613-020-2034-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2034-z

Keywords

Navigation