Skip to main content
Log in

Modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

This paper demonstrates an intrinsic modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films. The (NiCuCrFeSi)N ((NCCFS)N) films were deposited by a magnetron sputtering system. Rutherford backscattering spectroscopy analysis confirms the uniform composition and good homogeneity of these high-entropy films. The real and imaginary parts of the permittivity for the (NCCFS)N material are calculated on the basis of the reflectance spectral fitting results. A redshift cutoff wavelength of the reflectance spectrum with increasing nitrogen gas flow rate exists because of the different levels of dispersion when changing nitrogen content. To realize significant solar absorption, the film surface was reconstituted to match its impedance with air by designing a pyramid nanostructure metasurface. Compared with the absorptance of the as-deposited films, the designed metasurface obtains a significant improvement in solar absorption with the absorptance increasing from 0.74 to 0.99. The metasurfaces also show low mid-infrared emissions with thermal emittance that can be as low as 0.06. These results demonstrate a new idea in the design of solar selective absorbing surface with controllable absorptance and low infrared emission for high-efficiency photo-thermal conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.J. Brinkworth, Solar energy, Nature, 249(1974), p. 726.

    Article  CAS  Google Scholar 

  2. N.S. Lewis, Research opportunities to advance solar energy utilization, Science, 351(2016), No. 6271, p. aad1920.

    Article  Google Scholar 

  3. Q.C. Zhang and D.R. Mills, New cermet film structures with much improved selectivity for solar thermal applications, Appl. Phys. Lett., 60(1992), No. 5, p. 545.

    Article  CAS  Google Scholar 

  4. N.P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks, Opt. Express, 17(2009), No. 25, p. 22800.

    Article  CAS  Google Scholar 

  5. R. Gordon and A.G. Brolo, Increased cut-off wavelength for a subwavelength hole in a real metal, Opt. Express, 13(2005), No. 6, p. 1933.

    Article  Google Scholar 

  6. Y.X. Yeng, M. Ghebrebrhan, P. Bermel, W.R. Chan, J.D. Joannopoulos, M. Soljacic, and I. Celanovic, Enabling high-temperature nanophotonics for energy applications, Proceedings of the National Academy of Sciences, 109(2012), No. 7, p. 2280.

    Article  CAS  Google Scholar 

  7. P.N. Dyachenko, J.J. do Rosário, E.W. Leib, A. Yu. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G.A. Schneider, and M. Eich, Tungsten band edge absorber/emitter based on a monolay-er of ceramic microspheres, Opt. Express, 23(2015), No. 19, p. A1236.

    Article  CAS  Google Scholar 

  8. Y.P. Ning, W.W. Wang, L. Wang, Y. Sun, P. Song, H.L. Man, Y.L. Zhang, B.B. Dai, J.Y. Zhang, C. Wang, Y. Zhang, S.X. Zhao, E. Tomasella, A. Bousquet, and J. Cellier, Optical simulation and preparation of novel Mo/ZrSiN/ZrSiON/SiO2 solar selective absorbing coating, Sol. Energy Mater. Sol. Cells, 167(2017), p. 178.

    Article  CAS  Google Scholar 

  9. Y.P. Ning, W.W. Wang, Y. Sun, Y.X. Wu, Y.F. Liu, H.L. Man, C. Wang, Y. Zhang, S.X. Zhao, E. Tomasella, and A. Bousquet, Investigation on low thermal emittance of Al films deposited by magnetron sputtering, Infrared Phys. Technol., 75(2016), p. 133.

    Article  CAS  Google Scholar 

  10. Y.P. Ning, W.W. Wang, Y. Sun, Y.X. Wu, H.L. Man, C. Wang, S.X. Zhao, E. Tomasella, A. Bousquet, and Y. Zhang, Tuning of reflectance transition position of Al-AlN cermet solar selective absorbing coating by simulating, Infrared Phys. Technol., 80(2017), p. 65.

    Article  CAS  Google Scholar 

  11. E. Céspedes, M. Wirz, J.A. Sánchez-García, L. Alvarez-Fraga, R. Escobar-Galindo, and C. Prieto, Novel Mo-Si3N4 based selective coating for high temperature concentrating solar power applications, Sol. Energy Mater. Sol. Cells, 122(2014), p. 217.

    Article  Google Scholar 

  12. P.J. Ma, Q.F. Geng, X.H. Gao, S.R. Yang, and G. Liu, Aqueous chemical solution deposition of spinel Cu1.5Mn1.5O4 single layer films for solar selective absorber, RSC Adv., 6(2016), No. 60, p. 54820.

    Article  CAS  Google Scholar 

  13. P. Song, Y.X. Wu, L. Wang, Y. Sun, Y.P. Ning, Y.L. Zhang, B.B. Dai, E. Tomasella, A. Bousquet, and C. Wang, The investigation of thermal stability of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coating, Sol. Energy Mater. Sol. Cells, 171(2017), p. 253.

    Article  CAS  Google Scholar 

  14. E. Rephaeli and S.H. Fan, Tungsten black absorber for solar light with wide angular operation range, Appl. Phys. Lett., 92(2008), No. 21, art. No. 211107.

  15. V. Rinnerbauer, Y. Shen, J.D. Joannopoulos, M. Soljacic, F. Schäffler, and I. Celanovic, Superlattice photonic crystal as broadband solar absorber for high temperature operation, Opt. Express, 22(2014), No. S7, p. A1895.

    Article  CAS  Google Scholar 

  16. C. Argyropoulos, K.Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces, Phys. Rev. B, 87(2013), No. 20, p. 5112.

    Article  Google Scholar 

  17. C.L. Wan, Y.L. Ho, S. Nunez-Sanchez, L.F. Chen, M. Lopez-Garcia, J. Pugh, B.F. Zhu, P. Selvaraj, T. Mallick, S. Senthilarasu, and M.J. Cryan, A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications, Nano Energy, 26(2016), p. 392.

    Article  CAS  Google Scholar 

  18. G.Q. Liu, Y.Y. Nie, G.L. Fu, X.S. Liu, Y. Liu, L. Tang, and Z.Q. Liu, Semiconductor meta-surface based perfect light absorber, Nanotechnology, 28(2017), No. 16, p. 165202.

    Article  Google Scholar 

  19. M.H. Heidari and S.H. Sedighy, Broadband wide-angle polarization-insensitive metasurface solar absorber, J. Opt. Soc. Am. A, 35(2018), No. 4, p. 522.

    Article  CAS  Google Scholar 

  20. Z.Q. Liu, G.Q. Liu, Z.P. Huang, X.S. Liu, and G.L. Fu, Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface, Sol. Energy Mater. Sol. Cells, 179(2018), p. 346.

    Article  CAS  Google Scholar 

  21. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater., 10(2008), No. 21, p. 534.

    Article  CAS  Google Scholar 

  22. Y. Zou, H. Ma, and R. Spolenak, Ultrastrong ductile and stable high-entropy alloys at small scales, Nat. Commun., 6(2015), No. 7748, p. 1.

    Google Scholar 

  23. Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature, 534(2016), No. 7606, p. 227.

    Article  CAS  Google Scholar 

  24. C.-Y. Cheng and J.-W. Yeh, High thermal stability of the amorphous structure of GexNbTaTiZr (x = 0.5, 1) high-entropy alloys, Mater. Lett., 181(2016), p. 223.

    Article  CAS  Google Scholar 

  25. M.H. Tsai, C.W. Wang, C.H. Lai, J.W. Yeh, and J.Y. Gan, Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization, Appl. Phys. Lett., 92(2008), No. 5, p. 052109.

    Article  Google Scholar 

  26. C.Y. Cheng and J.W. Yeh, High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties, Mater. Lett., 185(2016), p. 456.

    Article  CAS  Google Scholar 

  27. A.D. Pogrebnjak, I.V. Yakushchenko, O.V. Bondar, V.M. Beresnev, K. Oyoshi, O.M. Ivasishin, H. Amekura, Y. Takeda, M. Opielak, and C. Kozak, Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNb-Ta)N coatings, J. Alloys Compd., 679(2016), p. 155.

    Article  CAS  Google Scholar 

  28. X.H. Yan, J.S. Li, W.R. Zhang, and Y. Zhang, A brief review of high-entropy films, Mater. Chem. Phys., 210(2018), p. 12.

    Article  CAS  Google Scholar 

  29. M. Mayer, SIMNRA User’s Guide, Max-Planck-Institut Für Plasmaphysik, Garching, 2017 p. 350.

    Google Scholar 

  30. J.F. Ziegler, J.P. Biersack, and M.D. Ziegler, SRIM — The Stopping and Range of Ions in Matter, SRIM Co., Chester, Maryland, 2008, p. 398.

    Google Scholar 

  31. P. Drude, The Theory of Optics, Dover Publications, New York, 1925.

    Google Scholar 

  32. C.C. Kim, J.W. Garland, H. Abad, and P.M. Raccah, Modeling the optical dielectric function of semiconductors: extension of the critical-point parabolic-band approximation, Phys. Rev. B, 45(1992), No. 20, p. 11749.

    Article  CAS  Google Scholar 

  33. Y.X. Wu, C. Wang, Y. Sun, Y.P. Ning, Y.F. Liu, Y.F. Xue, W.W. Wang, S.X. Zhao, E. Tomasella, and A. Bousquet, Tomasella, and A. Bousquet, Study on the thermal stability of Al/NbTiSiN/NbTiSiON/SiO2 solar selective absorbing coating, Sol. Energy, 119(2015), p. 18.

    Article  CAS  Google Scholar 

  34. N.P. Barradas, C. Jeynes, and R.P. Webb, Simulated annealing analysis of Rutherford backscattering data, Appl. Phys. Lett., 71(1997), No. 2, p. 291.

    Article  CAS  Google Scholar 

  35. M. Mayer, SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA, [in] AIP Conference Proceedings, AIP, Denton, Texas, 1999, p. 541.

    Chapter  Google Scholar 

  36. M. Fox, Optical Properties of Solids, Oxford University Press, New York, 2001.

    Google Scholar 

  37. T.K. Chen, M.S. Wong, T.T. Shun, and J.W. Yeh, Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surf. Coat. Technol., 200(2005), No. 5–6, p. 1361.

    Article  CAS  Google Scholar 

  38. D.C. Tsai, Z.C. Chang, B.H. Kuo, S.Y. Chang, and F.S. Shieu, Effects of silicon content on the structure and properties of (Al-CrMoTaTi)N coatings by reactive magnetron sputtering, J. Alloys Compd., 616(2014), p. 646.

    Article  CAS  Google Scholar 

  39. D. Alexei, V. Ilya, P. Boris, and L. Yurii, Minimizing light reflection from dielectric textured surfaces, J. Opt. Soc. Am. A, 28(2011), No. 5, p. 770.

    Article  Google Scholar 

  40. A. Dan, H.C. Barshilia, K. Chattopadhyay, and B. Basu, Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review, Renewable Sustainable Energy Rev., 79(2017), p. 1050.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51732001, U1832219, and 51972013), Beijing Natural Science Foundation (No. 2182035), the Fundamental Research Funds for the Central Universities, the Program of China Scholarships Council (No. 201806020161), and the Academic Excellence Foundation of Beihang University (BUAA) for Ph.D. Students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, P., Wang, C., Ren, J. et al. Modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films. Int J Miner Metall Mater 27, 1371–1378 (2020). https://doi.org/10.1007/s12613-020-1982-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-1982-7

Keywords

Navigation