Skip to main content

Advertisement

Log in

Feasibility of aluminum recovery and MgAl2O4 spinel synthesis from secondary aluminum dross

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The feasibility of aluminum recovery from secondary aluminum dross by extraction with NaOH solution and the subsequent synthesis of MgAl2O4 spinel by sintering the extracted slag were studied. The extraction percentage of soluble aluminum from the dross reached 80% at a temperature of 353 K, liquid-to-solid ratio of 12 mL·g−1, stirring speed of 300 r·min−1, and an extraction time of 15 min; the hydrolysis percentage of AlN reached 40% with an extraction time of 30 min. The activation energies of the soluble aluminum and AlN extracted from the dross were 7.15 and 8.98 kJ·mol−1, respectively, indicating that their kinetics were controlled by outer diffusion without a product layer. The extracted slag was sintered in the temperature range 1373–1773 K; MgAl2O4 spinel with a compressive strength as high as 69.4 MPa was produced in the sample sintered at 1673 K for 3 h. This value exceeds the threshold (40 MPa) prescribed by the National Standard for the Magnesia and Magnesia−alumina Refractory Bricks of China (GB/T 2275–2007). These results establish the effectiveness of aluminum recovery from secondary aluminum dross and subsequent MgAl2O4 spinel synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Hong, J. Wang, H.Y. Chen, B.D. Sun, J.J. Li, and C. Chen, Process of aluminum dross recycling and life cycle assessment for Al-Si alloys and brown fused alumina, Trans. Nonferrous Met. Soc. China, 20(2010), No. 11, p. 2155.

    Article  Google Scholar 

  2. A. López-Delgado, H. Tayibi, C. Pérez, F.J. Alguacil, and F.A. López, A hazardous waste from secondary aluminium metallurgy as a new raw material for calcium aluminate glasses, J. Hazard. Mater., 165(2009), No. 1–3, p. 180.

    Article  Google Scholar 

  3. J.A.S. Tenorio and D.C.R. Espinosa, Effect of salt/oxide interaction on the process of aluminum recycling, J. Light Met., 2(2002), No. 2, p. 89.

    Article  Google Scholar 

  4. P.E. Tsakiridis, Aluminum salt slag characterization and utilization-A review, J. Hazard. Mater., 217–218(2012), p. 3.

    Google Scholar 

  5. M.C. Shinzato and R. Hypolito, Solid waste from aluminum recycling process: characterization and reuse of its economically valuable constituents, Waste Manage., 25(2005), No. 1, p. 37.

    Article  Google Scholar 

  6. P.E. Tsakiridis, P. Oustadakis, and S. Agatzini-Leonardou, Aluminum recovery during black dross hydrothermal treatment, J. Environ. Chem. Eng., 1(2013), No. 1–2, p. 23.

    Article  Google Scholar 

  7. G.V. Calder and T.D. Stark, Aluminum reactions and problems in municipal solid waste landfills, Pract. Period. Hazard. Toxic Radioact. Waste Manage., 14(2010), No. 4, p. 258.

    Article  Google Scholar 

  8. J.Y. Hwang, X. Huang, and Z. Xu, Recovery of metals from aluminum dross and salt cake, J. Miner. Mater. Charact. Eng., 5(2006), No. 1, p. 47.

    Article  Google Scholar 

  9. B. Dash, B.R. Das, B.C. Tripathy, I.N. Bhattacharya, and S.C. Das, Acid dissolution of alumina from waste aluminum dross, Hydrometallurgy, 92(2008), No. 1–2, p. 52.

    Google Scholar 

  10. M. Davies, P. Smith, W.J. Bruckard, and J.T. Woodcock, Treatment of salt cakes by aqueous leaching and Bayer-type digestion, Miner. Eng., 21(2008), No. 8, p. 605.

    Article  Google Scholar 

  11. K. Taehyung, K. Donghyun, and K. Shinhoo, Effect of additives on the sintering of MgAl2O4, J. Alloys Compd., 587(2014), p. 594.

    Article  Google Scholar 

  12. H.N. Yoshimura, A.P. Abreu, A.L. Molisani, A.C. de Camargo, J.C.S. Portela, and N.E. Narita, Evaluation of aluminum dross waste as raw material for refractories, Ceram. Int., 34(2008), No. 3, p. 581.

    Article  Google Scholar 

  13. F. Tavangarian and R. Emadi, Synthesis and characterization of pure nanocrystalline magnesium aluminate spinel powder, J. Alloys Compd., 489(2010), No. 2, p. 600.

    Article  Google Scholar 

  14. I. Ganesh, G.J. Reddy, G. Sundararajan, S.M. Olhero, P.M.C. Torres, and J.M.F. Ferreira, Influence of processing route on microstructure and mechanical properties of MgAl2O4 spinel, Ceram. Int., 36(2010), No. 2, p. 473.

    Article  Google Scholar 

  15. Z.Y. Yu, N.Q. Zhao, E.Z. Liu, C.S. Shi, X.W. Du, and J. Wang, Fabrication of aluminum matrix composites with enhanced mechanical properties reinforced by in situ generated MgAl2O4 whiskers, Composites Part A, 43(2012), No. 4, p. 631.

    Article  Google Scholar 

  16. I. Ganesh, Fabrication of magnesium aluminate (MgAl2O4) spinel foams, Ceram. Int., 37(2011), No. 7, p. 2237.

    Article  Google Scholar 

  17. G. Bonnefont, G. Fantozzi, S. Trombert, and L. Bonneau, Fine-grained transparent MgAl2O4 spinel obtained by spark plasma sintering of commercially available nanopowders, Ceram. Int., 38(2012), No. 1, p. 131.

    Article  Google Scholar 

  18. F. Zhu, J.X. Liao, S.G. Xue, W. Hartley, Q. Zhou, and H. Wu, Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography, Sci. Total Environ., 573(2016), p. 157.

    Article  Google Scholar 

  19. M. Li, B. Peng, L.Y. Chai, N. Peng, H. Yan, and D.K. Hou, Recovery of iron from zinc leaching residue by selective reduction roasting with carbon, J. Hazard. Mater., 237–238(2012), p. 323.

    Article  Google Scholar 

  20. Y. Zhang, Z.H. Guo, Z.Y. Han, and X.Y. Xiao, Effect of rare earth oxides doping on MgAl2O4 spinel obtained by sintering of secondary aluminium dross, J. Alloys Compd., 735(2018), p. 2597.

    Article  Google Scholar 

  21. Z.Y. Han, Z.H. Guo, Y. Zhang, X.Y. Xiao, Z. Xu, and Y. Sun, Adsorption-pyrolysis technology for recovering heavy metals in solution using contaminated biomass phytoremediation, Resour. Conserv. Recycl., 129(2018), p. 20.

    Article  Google Scholar 

  22. X.F. Kong, M. Li, S.G. Xue, W. Hartley, C.R. Chen, C. Wu, X.F. Li, and Y.W. Li, Acid transformation of bauxite residue: Conversion of its alkaline characteristics, J. Hazard. Mater., 324(2017), Part B, p. 382.

    Article  Google Scholar 

  23. H.G. Li, Metallurgical Principle, Science Press, Beijing, 2005, p. 300.

    Google Scholar 

  24. R.C. Wang, Y.C. Zhai, Z.Q. Ning, and P.H. Ma, Kinetics of SiO2 leaching from Al2O3 extracted slag of fly ash sodium hydroxide solution, Trans. Nonferrous Met. Soc. China, 24(2014), No. 6, p. 1928.

    Article  Google Scholar 

  25. H.D. Chandler, Activation entropy and anomalous temperature dependence of viscosity in aqueous suspensions of Fe2O3, Powder Technol., 305(2017), p. 572.

    Article  Google Scholar 

  26. X.B. Li, W.J. Lv, G.T. Feng, G.H. Liu, Z.H. Peng, Q.S. Zhou, and Y. Meng, The applicability of Debye-Hückel model in NaAl(OH)4-NaOH-H2O system, Chin. J. Process Eng., 5(2005), No. 5, p. 525.

    Google Scholar 

  27. S. Wang, Preparation and Properties of Spinel Composites From Secondary Aluminium Dross [Dissertation], Central South University, Changsha, 2016, p. 6.

    Google Scholar 

  28. X.F. Kong, Y. Guo, S.G. Xue, W. Hartley, C. Wu, Y.Z. Ye, and Q.Y. Cheng, Natural evolution of alkaline characteristics in bauxite residue, J. Cleaner Prod., 143(2017), p. 224.

    Article  Google Scholar 

  29. X.L. Jia, H.J. Zhang, Y.J. Yan, and Z.J. Liu, Effect of the citrate sol-gel synthesis on the formation of MgAl2O4 ultrafine powder, Mater. Sci. Eng. A, 379(2004), No. 1–2, p. 112.

    Google Scholar 

  30. H.B. Bafrooei and T. Ebadzadeh, MgAl2O4 nanopowder synthesis by microwave assisted high energy ball-milling, Ceram. Int., 39(2013), No. 8, p. 8933.

    Article  Google Scholar 

  31. J.J. Guo, H. Lou, H. Zhao, X.G. Wang, and X.M. Zheng, Novel synthesis of high surface area MgAl2O4 spinel as catalyst support, Mater. Lett., 58(2004), No. 12–13, p. 1920.

    Article  Google Scholar 

  32. M.F. Zawrah, H. Hamaad, and S. Meky, Synthesis and characterization of nano MgAl2O4 spinel by co-precipitated method, Ceram. Int., 33(2007), No. 6, p. 969.

    Article  Google Scholar 

  33. N. Van Minh and I.S. Yang, A Raman study of cation disorder transition temperature of natural MgAl2O4 spinel, Vib. Spectrosc., 35(2004), No. 1–2, p. 93.

    Article  Google Scholar 

  34. P. Barpanda, S.K. Behera, P.K. Gupta, S.K. Pratihar, and S. Bhattacharya, Chemically induced order disorder transition in magnesium aluminum spinel, J. Eur. Ceram. Soc., 26(2006), No. 13, p. 2603.

    Article  Google Scholar 

  35. M.L. Bouchetou, J.P. Ildefonse, J. Poirier, and P. Daniellou, Mullite grown from fired andalusite grains: the role of impurities and of the high temperature liquid phase on the kinetics of mullitization and consequences on thermal shocks resistance, Ceram. Int., 31(2005), No. 7, p. 999.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21577176) and the Environment Protection Scientific Research Project of Hunan Province, China (No. [2016]59–3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-hui Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Guo, Zh., Han, Zy. et al. Feasibility of aluminum recovery and MgAl2O4 spinel synthesis from secondary aluminum dross. Int J Miner Metall Mater 26, 309–318 (2019). https://doi.org/10.1007/s12613-019-1739-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1739-3

Keywords

Navigation