Skip to main content
Log in

Investigation on the homogenization treatment and element segregation on the microstructure of a γ/γ′-cobalt-based superalloy

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate the effect of element segregation on the microstructure and γ′ phase in a γ/γ′ cobalt- based superalloy. Several samples were prepared from a cast alloy and homogenized at 1300°C for different times, with a maximum of 24 h. A microstructural study of the cast alloy using wavelength-dispersive spectroscopic analysis revealed that elements such as Al, Ti, and Ni segregated mostly within interdendritic regions, whereas W atoms were segregated within dendrite cores. With an increase in homogenization time, segregation decreased and the initial dendritic structure was eliminated. Field-emission scanning electron microscopy micrographs showed that the γ′ phases in the cores and interdendritic regions of the as-cast alloy were 392 and 124 nm, respectively. The size difference of γ′ was found to be due to the different segregation behaviors of constituent elements during solidification. After homogenization, particularly after 16 h, segregation decreased; thus, the size, chemical composition, and hardness of the precipitated γ′ phase was mostly uniform throughout the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.A. Wills and D.G. McCartney, A comparative study of solidification features in nickel-base superalloys: Microstructural evolution and microsegregation, Mater. Sci. Eng. A, 145(1991), No. 2, p. 223.

    Article  Google Scholar 

  2. N. Warnken, D. Ma, A. Drevermann, R.C. Reed, S.G. Fries, and I. Steinbach, Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys, Acta Mater., 57(2009), No. 19, p. 5862.

    Article  Google Scholar 

  3. G.D. Merz, T.Z. Kattamis, and A.F. Giamei, Microsegration and homogenization of Ni-7.5wt%Al-2.0wt%Ta dendritic monocrystals, J. Mater. Sci., 14(1979), No. 3, p. 663.

    Article  Google Scholar 

  4. M.S.A. Karunaratne, D.C. Cox, P. Carter, and R.C. Reed, Modelling of the microsegregation in CMSX-4 superalloy and its homogenisation during heat treatment, Superalloys, 2000, p. 263.

    Google Scholar 

  5. Z.J. Miao, A.D. Shan, Y.B. Wu, J. Lu, W.l. Xu, and H.W. Song, Quantitative analysis of homogenization treatment of INCONEL718 superalloy, Trans. Nonferrous Met. Soc. China, 21(2011), No. 5, p. 1009.

    Article  Google Scholar 

  6. Y.J. Li, Y.F. Teng, X.H. Feng, and Y.S. Yang, Effects of pulsed magnetic field on microsegregation of solute elements in a Ni-based single crystal superalloy, J. Mater. Sci. Technol., 33(2017), No. 1, p. 105.

    Article  Google Scholar 

  7. J.B. le Graverend, J. Cormier, P. Caron, S. Kruch, F. Gallerneau, and J. Mendez, Numerical simulation of γ/γ′ microstructural evolutions induced by TCP-phase in the MC2 nickel base single crystal superalloy, Mater. Sci. Eng. A, 528(2011), No. 6, p. 2620.

    Article  Google Scholar 

  8. A.S. Golezani, M. Bageri, and R. Samadi, Microstructural change, and impact toughness property of Inconel 738LC after 12 years of service, Eng. Fail. Anal., 59(2016), p. 624.

    Article  Google Scholar 

  9. M.R. Jahangiri, S.M.A. Boutorabi, and H. Arabi, Study on incipient melting in cast Ni base IN939 superalloy during solution annealing and its effect on hot workability, Mater. Sci. Technol., 28(2012), No. 12, p. 1402.

    Article  Google Scholar 

  10. S.H. Fu, J.X. Dong, M.C. Zhang, and X.S. Xie, Alloy design and development of INCONEL718 type alloy, Mater. Sci. Eng. A, 499(2009), No. 1–2, p. 215.

    Article  Google Scholar 

  11. Y.Z. Zhou and A. Volek, Effect of carbon additions on hot tearing of a second generation nickel-base superalloy, Mater. Sci. Eng. A, 479(2008), No. 1–2, p. 324.

    Article  Google Scholar 

  12. C.N. Wei, H.Y. Bor, and L. Chang, The effects of carbon content on the microstructure and elevated temperature tensile strength of a nickel-base superalloy, Mater. Sci. Eng. A, 527(2010), No. 16–17, p. 3741.

    Article  Google Scholar 

  13. F. Long, Y.S. Yoo, C.Y. Jo, S.M. Seo, Y.S. Song, T. Jin, and Z.Q. Hu, Formation of η and σ phase in three polycrystalline superalloys and their impact on tensile properties, Mater. Sci. Eng. A, 527(2009), No. 1–2, p. 361.

    Article  Google Scholar 

  14. J. Zhang and R.F. Singer, Effect of Zr and B on castability of Ni-based superalloy IN792, Metall. Mater. Trans. A, 35(2004), No. 4, p. 1337.

    Article  Google Scholar 

  15. A. Epishin, T. Link, U. Brückner, B. Fedelich, and P. Portella, Effects of segregation in nickel-base superalloys: Dendritic stresses, Superalloys, 2004, p. 537.

    Google Scholar 

  16. P. Li, S.S. Li, and Y.F. Han, Influence of solution heat treatment on microstructure and stress rupture properties of a Ni3Al base single crystal superalloy IC6SX, Intermetallics, 19(2011), No. 2, p. 182.

    Article  Google Scholar 

  17. M.T. Kim, D.S. Kim, and O.Y. Oh, Effect of γ′ precipitation during hot isostatic pressing on the mechanical property of a nickel-based superalloy, Mater. Sci. Eng. A, 480(2008), No. 1–2, p. 218.

    Article  Google Scholar 

  18. D.L. Sponseller, Differential thermal analysis of nickel-base superalloys, Superalloys, 1996, p. 259.

    Google Scholar 

  19. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd Ed., CRC Press, State of Florida, 1992, p. 61.

    Book  Google Scholar 

  20. F.J. Humphreysand M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, The Netherlands, 2004, p. 137.

    Google Scholar 

  21. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Cobalt-base high-temperature alloys, Science, 312(2006), No. 5770, p. 90.

    Article  Google Scholar 

  22. K. Tanaka, M. Ooshima, N. Tsuno, A. Sato, and H. Inui, Creep deformation of single crystals of new Co-Al-W-based alloys with fcc/L12 two-phase microstructures, Philos. Mag., 92(2012), No. 32, p. 4011.

    Article  Google Scholar 

  23. M.S. Titus, A. Suzuki, and T.M. Pollock, Creep and directional coarsening in single crystals of new γ-γ′ cobalt-base alloys, Scripta Mater., 66(2012), No. 8, p. 574.

    Article  Google Scholar 

  24. F. Xue, H.J. Zhou, X.H. Chen, Q.Y. Shi, H. Chang, M.L. Wang, X.F. Ding, and Q. Feng, Creep behavior of a novel Co-Al-W-base single crystal alloy containing Ta and Ti at 982°C, MATEC Web of Conferences, 14(2014), p. 15002.

    Article  Google Scholar 

  25. A. Bauer, S. Neumeier, F. Pyczak, R.F. Singer, and M. Göken, Creep properties of different γ′-strengthened Co-base superalloys, Mater. Sci. Eng. A, 550(2012), p. 333.

    Article  Google Scholar 

  26. S. Neumeier, L.P. Freund, and M. Göken, Novel wrought γ/γ′ cobalt base superalloys with high strength and improved oxidation resistance, Scripta Mater., 109(2015), p. 104.

    Article  Google Scholar 

  27. A. Suzuki and T.M. Pollock, High-temperature strength and deformation of γ/γ′ two-phase Co-Al-W-base alloys, Acta Mater., 56(2008), No. 6, p. 1288.

    Article  Google Scholar 

  28. M. Tsunekane, A. Suzuki, and T.M. Pollock, Single-crystal solidification of new Co-Al-W-base alloys, Intermetallics, 19(2011), No. 5, p. 636.

    Article  Google Scholar 

  29. X.F. Ding, T. Mi, F. Xue, H.J. Zhou, and M.L. Wang, Microstructure formation in γ-γ′ Co-Al-W-Ti alloys during directional solidification, J. Alloys Compd., 599(2014), p. 159.

    Article  Google Scholar 

  30. E.T. McDevitt, Feasibility of cast and wrought Co-Al-WX gamma-prime superalloys, Mater. Sci. Forum, 783–786(2014), p. 1159.

    Article  Google Scholar 

  31. I. Lopez-Galilea, C. Zenk, S. Neumeier, S. Huth, W. Theisen, and M. Göken, The thermal stability of intermetallic compounds in an as-cast SX Co-base superalloy, Adv. Eng. Mater., 17(2015), No. 6, p. 741.

    Article  Google Scholar 

  32. J. Koßmann, C.H. Zenk, I. Lopez-Galilea, S. Neumeier, A. Kostka, S. Huth, W. Theisen, M. Göken, R. Drautz, and T. Hammerschmidt, Microsegregation and precipitates of an as-cast Co-based superalloy—microstructural characterization and phase stability modelling, J. Mater. Sci., 50(2015), No. 19, p. 6329.

    Article  Google Scholar 

  33. P.J. Bocchini, E.A. Lass, K.W. Moon, M.E. Williams, C.E. Campbell, U.R. Kattner, D.C. Dunand, and D.N. Seidman, Atom-probe tomographic study of γ/γ′ interfaces and compositions in an aged Co-Al-W superalloy, Scripta Mater., 68(2013), No. 8, p. 563.

    Article  Google Scholar 

  34. F. Pyczak, A. Bauer, M. Göken, U. Lorenz, S. Neumeier, M. Oehring, J. Paul, N. Schell, A. Schreyer, A. Stark, and F. Symanzik, The effect of tungsten content on the properties of L12-hardened Co-Al-W alloys, J. Alloys Compd., 632(2015), p. 110.

    Article  Google Scholar 

  35. H.Y. Yan, V.A. Vorontsov, and D. Dye, Alloying effects in polycrystalline γ′ strengthened Co-Al-W base alloys, Intermetallics, 48(2014), p. 44.

    Article  Google Scholar 

  36. K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Phase equilibria and microstructure on γ′ phase in Co-Ni-Al-W system, Mater. Trans., 49(2008), No. 6, p. 1474.

    Article  Google Scholar 

  37. R.C. Kramb, M.M. Antony, and S.L. Semiatin, Homogenization of a nickel-base superalloy ingot material, Scripta Mater., 54(2006), No. 9, p. 1645.

    Article  Google Scholar 

  38. S.R. Hegde, R.M. Kearsey, and J.C. Beddoes, Designing homogenization-solution heat treatments for single crystal superalloys, Mater. Sci. Eng. A, 527(2010), No. 21–22, p. 5528.

    Article  Google Scholar 

  39. A. Janotti, M. Krčmar, C.L. Fu, and R.C. Reed, Solute diffusion in metals: Larger atoms can move faster, Phys. Rev. Lett., 92(2004), No. 8, p. 85901.

    Article  Google Scholar 

  40. S.S. Naghavi, V.I. Hegde, and C. Wolverton, Diffusion coefficients of transition metals in fcc cobalt, Acta Mater., 132(2017), p. 467.

    Article  Google Scholar 

  41. L. Gong, B. Chen, Z.H. Du, M.S. Zhang, R.C. Liu, and K. Liu, Investigation of solidification and segregation characteristics of cast Ni-base superalloy K417G, J. Mater. Sci. Technol., 34(2016), No. 3, p. 541.

    Article  Google Scholar 

  42. X.L. Pan, H.Y. Yu, G.F. Tu, W.R. Sun, and Z.Q. Hu, Segregation and diffusion behavior of niobium in a highly alloyed nickel-base superalloy, Trans. Nonferrous Met. Soc. China, 21(2011), No. 11, p. 2402.

    Article  Google Scholar 

  43. Y. Minamino, Y. Koizumi, N. Tsuji, T. Yamada, and T. Takahashi, Interdiffusion in Co solid solutions of Co-Al-Cr-Ni system at 1423 K, Mater. Trans., 44(2003), No. 1, p. 63.

    Article  Google Scholar 

  44. S. Obata, M. Moniruzzaman, and Y. Murata, Interdiffusion in Co-based Co-Al-W ternary alloys at elevated temperatures, ISIJ Int., 54(2014), No. 10, p. 2129.

    Article  Google Scholar 

  45. H. Chang, G.L. Xu, X.G. Lu, L. Zhou, K. Ishida, and Y.W. Cui, Experimental and phenomenological investigations of diffusion in Co-Al-W alloys, Scripta Mater., 106(2015), p. 13.

    Article  Google Scholar 

  46. J. Chen, L. Zhang, J. Zhong, W. Chen, and Y. Du, High-throughput measurement of the composition-dependent interdiffusivity matrices in Ni-rich fcc Ni-Al-Ta alloys at elevated temperatures, J. Alloys Compd., 688(2016), p. 320.

    Article  Google Scholar 

  47. S. Neumeier, H.U. Rehman, J. Neuner, C.H. Zenk, S. Michel, S. Schuwalow, J. Rogal, R. Drautz, and M. Göken, Diffusion of solutes in fcc cobalt investigated by diffusion couples and first principles kinetic Monte Carlo, Acta Mater., 106(2016), p. 304.

    Article  Google Scholar 

  48. A. Green and N. Swindells, Measurement of interdiffusion coefficients in Co-AI and Ni-AI systems between 1000 and 1200°C, Mater. Sci. Technol., 1(1985), No. 2, p. 101.

    Article  Google Scholar 

  49. I. Povstugar, P.P. Choi, S. Neumeier, A. Bauer, C.H. Zenk, M. Göken, and D. Raabe, Elemental partitioning and mechanical properties of Ti- and Ta-containing Co-Al-W-base superalloys studied by atom probe tomography and nanoindentation, Acta Mater., 78(2014), p. 78.

    Article  Google Scholar 

  50. I. Povstugar, C.H. Zenk, R. Li, P.P. Choi, S. Neumeier, O. Dolotko, M. Hoelzel, M. Göken, and D. Raabe, Elemental partitioning, lattice misfit and creep behaviour of Cr containing γ′ strengthened Co base superalloys, Mater. Sci. Technol., 32(2016), No. 3, p. 220.

    Article  Google Scholar 

  51. V.A. Vorontsov, J.S. Barnard, K.M. Rahman, H.Y. Yan, P.A. Midgley, and D. Dye, Coarsening behaviour and interfacial structure of γ′ precipitates in Co-Al-W based superalloys, Acta Mater., 120(2016), p. 14.

    Article  Google Scholar 

  52. C.H. Zenk, S. Neumeier, H.J. Stone, and M. Göken, Mechanical properties and lattice misfit of γ/γ′ strengthened Co-base superalloys in the Co-W-Al-Ti quaternary system, Intermetallics, 55(2014), p. 28.

    Article  Google Scholar 

  53. A. Bauer, S. Neumeier, F. Pyczak, and M. Göken, Microstructure and creep strength of different γ/γ′-strengthened Co-base superalloy variants, Scripta Mater., 63(2010), No. 12, p. 1197.

    Article  Google Scholar 

  54. M.J. Donachie and S.J. Donachie, Superalloys: A Technical Guide, ASM international, New York, 2002, p. 82.

    Google Scholar 

  55. R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2008, p. 216.

    Google Scholar 

Download references

Acknowledgement

The authors would like to appreciate the support of Dr. Jahanafrooz for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Arabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sani, S.A., Arabi, H., Kheirandish, S. et al. Investigation on the homogenization treatment and element segregation on the microstructure of a γ/γ′-cobalt-based superalloy. Int J Miner Metall Mater 26, 222–233 (2019). https://doi.org/10.1007/s12613-019-1727-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1727-7

Keywords

Navigation