Skip to main content
Log in

Spontaneous infiltration and wetting behaviors of a Zr-based alloy melt on a porous SiC substrate

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The spontaneous infiltration and wetting behaviors of a Zr-based alloy melt on porous a SiC ceramic plate were studied using the sessile drop method by continuous heating and holding for 1800 s at different temperatures in a high-vacuum furnace. The results showed that the Zr-based alloy melt could partly infiltrate the porous SiC substrate without pressure due to the effect of capillary pressure. Wettability and infiltration rates increased with increasing temperature, and interfacial reaction products (ZrC0.7 and TiC) were detected in the Zr-based alloy/SiC ceramic system, likely because of the reaction of the active elements Zr and Ti with elemental C. Furthermore, the redundant element Si diffused into the alloy melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.R. Zhu, W. Jiang, J.L. Wu, and B. Zhang, Effect of Mo on properties of the industrial Fe–B–alloy–derived Fe–based bulk metallic glasses, Int. J. Miner. Metall. Mater., 24(2017), 8, p. 926.

    Article  Google Scholar 

  2. H.Y. Chi, Z.G. Yuan, Y. Wang, M. Zuo, D.G. Zhao, and H.R. Geng, Glass-forming ability, microhardness, corrosion resistance, and dealloying treatment of Mg60–xCu40Ndx alloy ribbons, Int. J. Miner. Metall. Mater., 24(2017), 6, p. 708.

    Article  Google Scholar 

  3. S.S. Wang, Y.L. Wang, Y.D. Wu, T. Wang, and X.D. Hui, High plastic Zr–Cu–Fe–Al–Nb bulk metallic glasses for biomedical applications, Int. J. Miner. Metall. Mater., 22(2015), 6, p. 648.

    Article  Google Scholar 

  4. W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog. Mater. Sci., 57(2012), 3, p. 487.

    Article  Google Scholar 

  5. A. Inoue and N. Nishiyama, New bulk metallic glasses for applications as magnetic–sensing, chemical, and structural materials, MRS Bull., 32(2007), 8, p. 651.

    Article  Google Scholar 

  6. Z.F. Zhang and J. Eckert, Unified tensile fracture criterion, Phys. Rev. Lett., 94(2005), No. 9, art. No. 094301.

    Google Scholar 

  7. M.Q. Jiang and L.H. Dai, On the origin of shear banding instability in metallic glasses, J. Mech. Phys. Solids, 57(2009), 8, p. 1267.

    Article  Google Scholar 

  8. L.F. Liu, L.H. Dai, Y.L. Bai, and B.C. Wei, Initiation and propagation of shear bands in Zr–based bulk metallic glass under quasi–static and dynamic shear loadings, J. Non–Cryst. Solids, 351(2005), 40–42, p. 3259.

    Article  Google Scholar 

  9. Z.F. Zhang, J. Eckert, and L. Schultz, Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass, Acta Mater., 51(2003), 4, p. 1167.

    Article  Google Scholar 

  10. H.M. Zhai, Y.H. Xu, Y. Du, H.F. Wang, and F. Liu, Strain rate sensitivity and deformation behavior in a Ti–based bulk metallic glass composite, J. Non–Cryst. Solids, 471(2017), p. 128.

    Article  Google Scholar 

  11. F.F. Wu, K.C. Chan, S.H. Chen, S.S. Jiang, and G. Wang, ZrCu–based bulk metallic glass composites with large strain–hardening capability, Mater. Sci. Eng, A, 636(2015), p. 502.

    Article  Google Scholar 

  12. B. Zhang, H.M. Fu, P.F. Sha, Z.W. Zhu, C. Dong, H.F. Zhang, and Z.Q. Hu, Anisotropic compressive deformation behaviors of tungsten fiber reinforced Zr–based metallic glass composites, Mater. Sci. Eng, A, 566(2013), p. 16.

    Article  Google Scholar 

  13. B. Zhang, H.M. Fu, Z.W. Zhu, A.M. Wang, H. Li, C. Dong, Z.Q. Hu, and H.F. Zhang, Synthesis and properties of tungsten balls/Zr–base metallic glass composite, Mater. Sci. Eng, A, 540(2012), p. 207.

    Article  Google Scholar 

  14. Z. Zhu, H. Zhang, Z. Hu, W. Zhang, and A. Inoue, Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity, Scripta Mater., 62(2010), 5, p. 278.

    Article  Google Scholar 

  15. H.F. Zhang, A.M. Wang, H. Li, W.S. Sun, B.Z. Ding, Z.Q. Hu, H.N. Cai, L. Wang, and W. Li, Quasi-static compressive property of metallic glass/porous tungsten bi-continuous phase composite, J. Mater. Res., 21(2006), 6, p. 1351.

    Article  Google Scholar 

  16. Y. Sun, H.X. Zhang, A.M. Wang, H.M. Fu, Z.Q. Hu, C. Wen, and P. Hodgson, Mg-based metallic glass/titanium interpenetrating phase composite with high mechanical performance, Appl. Phys. Lett., 95(2009), No. 17, art. No. 171910.

    Google Scholar 

  17. Y. Sun, H.F. Zhang, A.M. Wang, H.M. Fu, Z.Q. Hu, C.E. Wen, and P. Hodgson, Compressive deformation and damage of Mg–based metallic glass interpenetrating phase composite containing 30–70vol% titanium, J. Mater. Res., 25(2010), 11, p. 2192.

    Article  Google Scholar 

  18. X.Q. Zhang, L.L. Ma, Y.F. Xue, Q.B. Fan, Z.H. Nie, L. Wang, J.M. Yin, H.F. Zhang, and H.M. Fu, Temperature dependence of micro–deformation behavior of the porous tungsten/Zr–based metallic glass composite, J. Non–Cryst. Solids, 436(2016), p. 9.

    Article  Google Scholar 

  19. X.D. Hui, J.L. Yu, M.L. Wang, W. Dong, and G.L. Chen, Wetting angle and infiltration velocity of Zr base bulk metallic glass composite, Intermetallics, 14(2006), 8–9, p. 931.

    Article  Google Scholar 

  20. K. Sang, L. Weiler, and E. Aulbach, Wetting and pressureless infiltration in the CuTi/Al2O3 system under poor vacuum, Ceram. Int., 36(2010), 2, p. 719.

    Article  Google Scholar 

  21. T. Gambaryan–Roisman, Liquids on porous layers: wetting, imbibition and transport processes, Curr. Opin. Colloid Interface Sci.., 19(2014), 4, p. 320.

    Article  Google Scholar 

  22. S.B. Ren, X.Y. Shen, X.H. Qu, and X.B. He, Effect of Mg and Si on infiltration behavior of Al alloys pressureless infiltration into porous SiCp preforms, Int. J. Miner. Metall. Mater., 18(2011), 6, p. 703.

    Article  Google Scholar 

  23. Q. Qi, Y. Liu, H. Zhang, Y.S. Li, H.Q. Liang, and Z.R. Huang, Processing and microstructure characterization of SiCp/Hastelloy(Ni–Mo–Cr) composites prepared by pressureless infiltration, J. Alloys Compd., 639(2015), p. 330.

    Article  Google Scholar 

  24. K.P. Trumble, Spontaneous infiltration of non–cylindrical porosity: close–packed spheres, Acta Mater., 46(1998), 7, p. 2363.

    Article  Google Scholar 

  25. B. Zhang, H. Li, Z.W. Zhu, H.M. Fu, A.M. Wang, C. Dong, H.F. Zhang, and Z.Q. Hu, Reaction induced anomalous temperature dependence of equilibrium contact angle of TiZr based glass forming melt on Al2O3 substrate, Mater. Sci. Technol., 29(2013), 3, p. 332.

    Article  Google Scholar 

  26. A. Peker and W.L. Johnson, A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Appl. Phys. Lett., 63(1993), 17, p. 2342.

    Article  Google Scholar 

  27. J. Lu, G. Ravichandran, and W.L. Johnson, Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain–rates and temperatures, Acta Mater., 51(2003), 12, p. 3429.

    Article  Google Scholar 

  28. H.A. Bruck, T. Christman, A.J. Rosakis, and W.L. Johnson, Quasi–static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys, Scripta Metall. Mater., 30(1994), 4, p. 429.

    Article  Google Scholar 

  29. N. Liu, H.F. Zhang, H. Li, and Z.Q. Hu, Wetting phenomena in CuZr–based glassy alloys/W system, J. Alloys Compd., 494(2010), 1–2, p. 347.

    Article  Google Scholar 

  30. S. Ding, J. Kong, and J. Schroers, Wetting of bulk metallic glass forming liquids on metals and ceramics, J. Appl. Phys., 110(2011), No. 4, art. No. 043508.

    Google Scholar 

  31. E. Candan, H.V. Atkinson, and H. Jones, Role of surface tension in relation to contact angle in determining threshold pressure for melt infiltration of ceramic powder compacts, Scripta Mater., 38(1998), 6, p. 999.

    Article  Google Scholar 

  32. S.Y. Oh, J.A. Cornie, and K. Russell, Wetting of ceramic particulates with liquid aluminum alloys: Part I. Experimental techniques, Metall. Mater. Trans, A, 20(1989), 3, p. 527.

    Article  Google Scholar 

  33. A. Takeuchi and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans., 46(2005), 12, p. 2817.

    Article  Google Scholar 

  34. D.B. Miracle, A structural model for metallic glasses, Nat. Mater., 3(2004), 10, p. 697.

    Article  Google Scholar 

  35. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma, Atomic packing and short-to-medium-range order in metallic glasses, Nature, 439(2006), 7075, p. 419.

    Article  Google Scholar 

  36. X. Hui, H.Z. Fang, G.L. Chen, S.L. Shang, Y.Z. Wang, J.Y. Qin, and Z.K. Liu, Atomic structure of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass alloy, Acta Mater., 57(2009), 2, p. 376.

    Article  Google Scholar 

  37. H. Choi–Yim, R. Busch, and W.L. Johnson, The effect of silicon on the glass forming ability of the Cu47Ti34Zr11Ni8 bulk metallic glass forming alloy during processing of composites, J. Appl. Phys., 83(1998), 12, p. 7993.

    Article  Google Scholar 

  38. B.Q. Zhang, Y.Z. Jia, S.T. Wang, G. Li, S.F. Shan, Z.J. Zhan, R.P. Liu, and W.K. Wang, Effect of silicon addition on the glass–forming ability of a Zr–Cu–based alloy, J. Alloys Compd., 468(2009), 1–2, p. 187.

    Article  Google Scholar 

  39. Y.Q. Zeng, A. Inoue, N. Nishiyama, and M.W. Chen, Ni-rich Ni–Pd–P bulk metallic glasses with significantly improved glass-forming ability and mechanical properties by Si addition, Intermetallics, 18(2010), 9, p. 1790.

    Article  Google Scholar 

  40. J.S.C. Jang, S.R. Jian, C.F. Chang, L.J. Chang, Y.C. Huang, T.H. Li, J.C. Huang, and C.T. Liu, Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk metallic glass microalloyed with silicon, J. Alloys Compd., 478(2009), 1–2, p. 215.

    Article  Google Scholar 

  41. Y. He, R.B. Schwarz, and D.G. Mandrus, Thermal expansion of bulk amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy, J. Mater. Res., 11(1996), p. 1136.

    Google Scholar 

  42. L.Z. Zhao, M.J. Zhao, X.M. Cao, C. Tian, W.P. Hu, and J.S. Zhang, Thermal expansion of a novel hybrid SiC foam–SiC particles–Al composites, Compos. Sci. Technol., 67(2007), 15, p. 3404.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 51401131) and the China's Manned Space Station Project (No. TGJZ800–2–RW024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Li, W., Li, H. et al. Spontaneous infiltration and wetting behaviors of a Zr-based alloy melt on a porous SiC substrate. Int J Miner Metall Mater 25, 817–823 (2018). https://doi.org/10.1007/s12613-018-1630-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1630-7

Keywords

Navigation