Skip to main content
Log in

Flow-accelerated corrosion behavior of 13Cr stainless steel in a wet gas environment containing CO2

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

This work investigated the flow-accelerated corrosion (FAC) behavior of 13Cr in a wet CO2-containing environment at different flowing gas velocities and impinging angles, with the natural-gas pipeline environment simulated by a self-assembled impingement jet system. Surface morphology determination, electrochemical measurements, and hydromechanics numerical analysis were carried out to study the FAC behavior. The results demonstrate that pitting corrosion was the primary mode of corrosion in 13Cr stainless steel. High-flow-rate gas destroyed the passive film and decreased the pitting potential, resulting in more serious corrosion. The corrosion degree with various impact angles showed the following order: 90° > 60° > 45°. The shear force and the electrolyte from the flowing gas were concluded to be the determinant factors of FAC, whereas the shear force was the main factor responsible for destroying the passive film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du, and C.F. Dong, Materials science: share corrosion data, Nature, 527(2015), 7579, p. 441.

    Article  Google Scholar 

  2. S. Nešić, Key issues related to modelling of internal corrosion of oil and gas pipelines—a review, Corros. Sci., 49(2007), 12, p. 4308.

    Article  Google Scholar 

  3. J.W. Yang, H2S/CO2 corrosion of X60 pipeline steel in wet gas and solution, Acta Metall. Sin., 44(2008), 11, p. 1366.

    Google Scholar 

  4. S.S. Rajahram, T.J. Harvey, and R.J.K. Wood, Erosion- corrosion resistance of engineering materials in various test conditions, Wear, 267(2009), No. 1–4, p. 244.

    Article  Google Scholar 

  5. K. Najmi, B.S. McLaury, S.A. Shirazi, and S. Cremaschi, Experimental study of low concentration sand transport in wet gas flow regime in horizontal pipes, J. Nat. Gas Sci. Eng., 24(2015), p. 80.

    Article  Google Scholar 

  6. P.B. Machado, J.G.M. Monteiro, J.L. Medeiros, H.D. Epsom, and O.Q.F. Araujo, Supersonic separation in onshore natural gas dew point plant, J. Nat. Gas Sci. Eng., 6(2012), p. 43.

    Article  Google Scholar 

  7. L.T. Wang, Y.Y. Xing, Z.Y. Liu, D.W. Zhang, C.W. Du, and X.G. Li, Erosion-corrosion behavior of 2205 duplex stainless steel in wet gas environments, J. Nat. Gas Sci. Eng., 35(2016), p. 928.

    Article  Google Scholar 

  8. X.M. Hu and A. Neville, CO2 erosion-corrosion of pipeline steel (API X65) in oil and gas conditions—a systematic approach, Wear, 267(2009), 11, p. 2027.

    Article  Google Scholar 

  9. A. Kahyarian, M. Singer, and S. Nesic, Modeling of uniform CO2 corrosion of mild steel in gas transportation systems: a review, J. Nat. Gas Sci. Eng., 29(2016), p. 530.

    Article  Google Scholar 

  10. M. Bagheri, A. Alamdari, and M. Davoudi, Quantitative risk assessment of sour gas transmission pipelines using CFD, J. Nat. Gas Sci. Eng., 31(2016), p. 108.

    Article  Google Scholar 

  11. L. Giourntas, T. Hodgkiess, and A.M. Galloway, Comparative study of erosion-corrosion performance on a range of stainless steels, Wear, 332-333(2015), p. 1051.

    Article  Google Scholar 

  12. D.A. López, T. Pérez, and S.N. Simison, The influence of microstructure and chemical composition of carbon and low alloy steels in CO2 corrosion. A state-of-the-art appraisal, Mater. Des., 24(2003), 8, p. 561.

    Article  Google Scholar 

  13. G.A. Zhang and Y.F. Cheng, Electrochemical corrosion of X65 pipe steel in oil/water emulsion, Corros. Sci., 51(2009), 4, p. 901.

    Article  Google Scholar 

  14. M.A. Islam and Z.N. Farhat, The synergistic effect between erosion and corrosion of API pipeline in CO2 and saline medium, Tribol. Int., 68(2013), p. 26.

    Article  Google Scholar 

  15. R.J.K. Wood, J.C. Walker, T.J. Harvey, S. Wang, and S.S. Rajahram, Influence of microstructure on the erosion and erosion-corrosion characteristics of 316 stainless steel, Wear, 306(2013), No. 1–2, p. 254.

    Article  Google Scholar 

  16. E. Mahdi, A. Rauf, and E.O. Eltai, Effect of temperature and erosion on pitting corrosion of X100 steel in aqueous silica slurries containing bicarbonate and chloride content, Corros. Sci., 83(2014), p. 48.

    Article  Google Scholar 

  17. Y.L. Zhao, F. Zhou, J. Yao, S.G. Dong, and N. Li, Erosion- corrosion behavior and corrosion resistance of AISI 316 stainless steel in flow jet impingement, Wear, 328-329(2015), p. 464.

    Article  Google Scholar 

  18. G.A. Zhang, L.Y. Xu, and Y.F. Cheng, Investigation of erosion- corrosion of 3003 aluminum alloy in ethylene glycol- water solution by impingement jet system, Corros. Sci., 51(2009), 2, p. 283.

    Article  Google Scholar 

  19. W.M. Zhao, C. Wang, T.M. Zhang, M. Yang, B. Han, and A. Neville, Effects of laser surface melting on erosion-corrosion of X65 steel in liquid-solid jet impingement conditions, Wear, 362-363(2016), p. 39.

    Article  Google Scholar 

  20. G.A. Zhang, L. Zeng, H.L. Huang, and X.P. Guo, A study of flow accelerated corrosion at elbow of carbon steel pipeline by array electrode and computational fluid dynamics simula tion, Corros. Sci., 77(2013), p. 334.

    Article  Google Scholar 

  21. S. Papavinasam, R. Revie, M. Attard, A. Demoz, and K. Michaelian, Comparison of laboratory methodologies to evaluate corrosion inhibitors for oil and gas pipelines, Corrosion, 59(2003), 10, p. 897.

    Article  Google Scholar 

  22. X. Jiang, Y.G. Zheng, and W. Ke, Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for CO2 corrosion of N80 steel in 3% NaCl solution, Corros. Sci., 47(2005), 11, p. 2636.

    Article  Google Scholar 

  23. A.H. Hosseinloo, F.F. Yap, and L.Y. Lim, Design and analysis of shock and random vibration isolation system for a discrete model of submerged jet impingement cooling system, J. Vib. Control, 21(2015), 3, p. 468.

    Article  Google Scholar 

  24. H. Luo, C.F. Dong, X.G. Li, and K. Xiao, The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride, Electrochim. Acta, 64(2012), p. 211.

    Article  Google Scholar 

  25. X.F. Wang, Z.J. Dong, Y.J. Liang, Z.H. Zhang, and C.F. Chen, Development of economic steels with low Cr content for anti-corrosion oil tube, Corros. Sci. Protect. Technol., 18(2006), 6, p. 436.

    Google Scholar 

  26. H. Takabe and M. Ueda, The relationship between CO2 corrosion resistance and corrosion products structure on carbon and low Cr bearing steels, Corros. Eng., 56(2007), 11, p. 514.

    Article  Google Scholar 

  27. G.A. Zhang and Y.F. Cheng, Electrochemical characterization and computational fluid dynamics simulation of flow-accelerated corrosion of X65 steel in a CO2-saturated oilfield formation water, Corros. Sci. 52(2010), 8, p. 2716.

    Article  Google Scholar 

  28. K. Stewartson, Mechanics of Fluids, Nature, 272(1978), 5648, p. 109.

    Article  Google Scholar 

  29. B.S. Massey and J. Ward-Smith, Mechanics of Fluids, CRC Press, Boca Raton, 1998, p. 36.

    Google Scholar 

  30. B.R. Munson, D.F. Young, and T.H. Okiishi, Fundamentals of Fluid Mechanics, 3rd Ed. Wiley, New York, 1990, p. 16.

    Google Scholar 

  31. M. Metikoš-Huković, I. Škugor, Z. Grubač, and R. Babić, Complexities of corrosion behaviour of copper-nickel alloys under liquid impingement conditions in saline water, Electrochim. Acta, 55(2010), 9, p. 3123.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Environmental Corrosion Platform (NECP), the National Key Technology R&D Program of China (No. 2011BAK06B01-01-02) and the Fundamental Research Funds for the Central Universities of china (No. FRF-BR-17-028A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-yong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, Md., Li, Jk. et al. Flow-accelerated corrosion behavior of 13Cr stainless steel in a wet gas environment containing CO2. Int J Miner Metall Mater 25, 779–787 (2018). https://doi.org/10.1007/s12613-018-1626-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1626-3

Keywords

Navigation