Skip to main content
Log in

Cu−Zn−Al2O3 nanocomposites: study of microstructure, corrosion, and wear properties

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Alumina nanoparticles were added to a Cu−Zn alloy to investigate their effect on the microstructural, tribological, and corrosion properties of the prepared alloys. Alloying was performed using a mixture of copper and zinc powders with 0vol% and 5vol% of α-Al nanopowder in a satellite ball mill. The results showed that the Cu−Zn solid solution formed after 18 h of mechanical alloying. The mechanically alloyed powder was compacted followed by sintering of the obtained green compacts at 750°C for 30 min. Alumina nanoparticles were uniformly distributed in the matrix of the Cu−Zn alloy. The tribological properties were evaluated by pin-on-disk wear tests, which revealed that, upon the addition of alumina nanoparticles, the coefficient of friction and the wear rate were reduced to 20% and 40%, respectively. The corrosion properties of the samples exposed to a 3.5wt% NaCl solution were studied using the immersion and potentiodynamic polarization methods, which revealed that the addition of alumina nanoparticles reduced the corrosion current of the nanocomposite by 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Webster, The Brasses: Properties & Applications, Copper Development Association, Hertfordshire, 2005.

    Google Scholar 

  2. J.R. Davis, Copper and Copper Alloys, ASM International, Materials Park, Ohio, 2001.

    Google Scholar 

  3. S.K. Pabi and B.S. Murty, Mechanism of mechanical alloying in Ni Al and Cu Zn systems, Mater. Sci. Eng. A, 214(1996), No. 1-2, p. 146.

    Article  Google Scholar 

  4. S.D. Beattie and J.R. Dahn, Comparison of electrodeposited copper−zinc alloys prepared individually and combinatorially, J. Electrochem. Soc., 150(2003), No. 11, p. C802.

    Article  Google Scholar 

  5. Y. Guan and X. Peng, A novel electrodeposited Cu–Zn–Bi film with increased corrosion resistance in a 0.05 MK2SO4 solution, Appl. Surf. Sci., 258(2011), No. 2, p. 822.

    Article  Google Scholar 

  6. M.R.H.D. Almeida, E.P. Barbano, M.F.D. Carvalho, P.C. Tulio, and I.A. Carlos, Copper–zinc electrodeposition in alkaline-sorbitol medium: electrochemical studies and structural, morphological and chemical composition characterization, Appl. Surf. Sci., 333(2015), p. 13.

    Article  Google Scholar 

  7. D.Y. Ying and D.L. Zhang, Processing of Cu−Al2O3 metal matrix nanocomposite materials by using high energy ball milling, Mater. Sci. Eng. A, 286(2000), No. 1, p. 152.

    Article  Google Scholar 

  8. K.S. Zuo, S.Q. Xi, and J.E. Zhou, Effect of temperature on mechanical alloying of Cu−Zn and Cu−Cr system, Trans. Nonferrous Met. Soc. China, 19(2009), No. 5, p. 1206.

    Article  Google Scholar 

  9. T. Yamane, H. Okubo, N. Oki, K. Hisayuki, M. Kiritani, and M. Komatsu, Consolidation of mechanically alloyed powder mixture of Cu−Zn alloy and graphite, Mater. Sci. Eng. A, 350(2003), No. 1-2, p. 173.

    Article  Google Scholar 

  10. F. Cardellini, V. Contini, G. Mazzone, and M. Vittori, Phase Transformations and chemical reactions in mechanically alloyed Cu−Zn powders, Scripta Metall. Mater., 28(1993), No. 9, p. 1035.

    Article  Google Scholar 

  11. V. Rajkovic, D. Bozic, and M.T. Jovanovic, Effects of copper and Al2O3 particles on characteristics of Cu−Al2O3 composites, Mater. Des., 31(2010), No. 4, p. 1962.

    Article  Google Scholar 

  12. M.F. Zawrah, H.A. Zayed, R.A. Essawy, A.H. Nassar, and M.A. Taha, Preparation by mechanical alloying, characterization and sintering of Cu−20wt.% Al2O3 nanocomposites, Mater. Des., 46(2013), p. 485.

    Article  Google Scholar 

  13. L.H. Hihara and R.M. Latanision, Corrosion of metal matrix composites, Int. Mater. Rev., 39(1994), No. 6, p. 245.

    Article  Google Scholar 

  14. B.D. Cullity, Elements of X-ray Diffraction, 2nd Ed., Addison-Wesley Publishing Company, USA, 1978.

    Google Scholar 

  15. J.B. Fogagnolo, F. Velasco, M.H. Robert, and J.M. Torralba, Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders, Mater. Sci. Eng. A, 342(2003), No. 1-2, p. 131.

    Article  Google Scholar 

  16. H.P. Klung and L.E. Alexander, X-ray Diffraction Procedures, Wiley, New York, 1962.

    Google Scholar 

  17. C. Suryanarayana and M.G. Norton, X-ray Diffraction: A Practical Approach, Springer Science & Business Media, New York, 2013.

    Google Scholar 

  18. J. Eckert, J.C. Holzer, C.E. Krill, and W.L. Johnson, Reversible grain size changes in ball-milled nanocrystalline Fe−Cu alloys, J. Mater. Res., 7(1992), No. 8, p. 1980.

    Article  Google Scholar 

  19. C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci., 46(2001), p. 1.

    Article  Google Scholar 

  20. N.K. Mukhopadhyay, D. Mukherjee, S. Bera, I. Manna, and R. Manna, Synthesis and characterization of nano-structured Cu–Zn γ-brass alloy, Mater. Sci. Eng. A, 485(2008), No. 1-2, p. 673.

    Article  Google Scholar 

  21. L. Lü and M.O. Lai, Mechanical Alloying, Springer Science & Business Media, New York, 2013.

    Google Scholar 

  22. H. Imai, K. Kondoh, Y. Kosaka, S. Li, J. Umeda, H. Atsumi, and A. Kojima, Characteristics of lead-free P/M Cu60−Zn40 brass alloys with graphite, Powder Technol., 198(2010), No. 3, p. 417.

    Article  Google Scholar 

  23. S. Domsa, Sintered brass from mechanical Cu−Zn powder mixtures, J. Phys. IV, 3(1993), No. C7, p. 735.

    Google Scholar 

  24. R.M. German, Sintering Theory and Practice, Wiley-VCH, 1996, p. 568.

    Google Scholar 

  25. R.M. German, Powder Metallurgy and Particulate Materials Processing: the Processes, Materials, Products, Properties, and Applications, Metal Powder Industries Federation Princeton, NJ, 2005.

    Google Scholar 

  26. P.J.F. Harris, Growth and structure of supported metal catalyst particles, Int. Mater. Rev., 40(1995), No. 3, p. 97.

    Article  Google Scholar 

  27. M. Korać1, Z. Anđić, M. Tasić, and Ž. Kamberović, Sintering of Cu–Al2O3 nano-composite powders produced by a thermochemical route, J. Serb. Chem. Soc., 72(2007), No. 11, p. 1115.

    Article  Google Scholar 

  28. F. Shehata, M. Abdelhameed, A. Fathy, and M. Elmahdy, Preparation and characteristics of Cu−Al2O3 nanocomposite, Open J. Met., 1(2011), p. 25.

    Article  Google Scholar 

  29. R. Ritasalo, X.W. Liua, O. Söderberg, A. Keski-Honkola, V. Pitkänen, and S.P. Hannula, The microstructural effects on the mechanical and thermal properties of pulsed electric current sintered Cu−Al2O3 composites, Procedia Eng., 10(2011), p. 124.

    Article  Google Scholar 

  30. P.L. Mangonon, The Principles of Materials Selection for Engineering Design, Prentice Hall, London, 1999.

    Google Scholar 

  31. V. Rajković, D. Božić, A. Devečerski, S. Bojanić, and M.T. Jovanović, Strength and thermal stability of Cu−Al2O3 composite obtained by internal oxidation, Rev. Metal., 46(2010), No. 6, p. 520.

    Article  Google Scholar 

  32. V. Rajković, D. Božić, M. Popović, and M.T. Jovanović, The influence of powder particle size on properties of Cu−Al2O3 composites, Sci. Sintering, 41(2009), p. 185.

    Article  Google Scholar 

  33. A. Mukhtar, D.L. Zhang, C. Kong, and P. Munroe, Effect of processing condition and composition on the microhardness of Cu−(2.5−10) vol.% Al2O3 nanocomposite powder particles produced by high energy mechanical milling, Int. J. Mod. Phys. B, 24(2010), No. 15, p. 2308.

    Article  Google Scholar 

  34. K. Jach, K. Pietrzak, A. Wajler, A. Sidorowicz, and U. Brykała, Application of ceramic preforms to the manufacturing of ceramic-metal composites, Arch. Metall. Mater., 58(2013), No. 4, p. 1425.

    Article  Google Scholar 

  35. A. Vencl, V. Rajkovic, and F. Zivic, Friction and wear properties of copper-based composites reinforced with micro-and nano-sized Al2O3 particles, [in] Proceedings of the 8th International Conference on Tribology — BALKANTRIB’14, Sinaia, Romania, 2014, p. 30.

    Google Scholar 

  36. G.H. Zhou, H.Y. Ding, Y. Zhang, H. David, and A.H. Liu, Fretting behavior of nano-Al2O3 reinforced copper-matrix composites prepared by coprecipitation, Metalurgija, 15(2009), No. 3, p. 169.

    Google Scholar 

  37. A.M. Soleimanpour, P. Abachi, and K. Purazrang, Wear behaviour of in situ Cu–Al2O3 composites produced by internal oxidation of as cast alloys, Tribol. Mater. Surf. Interfaces, 3(2009), No. 3, p. 125.

    Article  Google Scholar 

  38. Y.S. Zhang, K. Wang, Z. Han, and G. Liu, Dry sliding wear behavior of copper with nano-scaled twins, Wear, 262(2007), No. 11-12, p. 1463.

    Article  Google Scholar 

  39. A. Fathy, F. Shehata, M. Abdelhameed, and M. Elmahdy, Compressive and wear resistance of nanometric alumina reinforced copper matrix composites, Mater. Des., 36(2012), p. 100.

    Article  Google Scholar 

  40. J.W. Kaczmar, K. Granat, E. Grodzka, and A. Kurzawa, Tribological properties of Cu based composite materials strengthened with Al2O3 particles, Arch. Foundry Eng., 12(2012), No. 2, p. 33.

    Google Scholar 

  41. F. Shehata, A. Fathy, M. Abdelhameed, and S.F. Moustafa, Fabrication of copper−alumina nanocomposites by mechano-chemical routes, J. Alloys Compd., 476(2009), No. 1-2, p. 300.

    Article  Google Scholar 

  42. C.S. Ramesh, R.N. Ahmed, M.A. Mujeebu, and M.Z. Abdullah, Development and performance analysis of novel cast copper−SiC−Gr hybrid composites, Mater. Des., 30(2009), No. 6, p. 1957.

    Article  Google Scholar 

  43. G. Yuan, J.C. Jie, P.C. Zhang, J. Zhang, T.M. Wang, and T.J. Li, Wear behavior of high strength and high conductivity Cu alloys under dry sliding, Trans. Nonferrous Met. Soc. China, 25(2015), No. 7, p. 2293.

    Article  Google Scholar 

  44. S. Alirezaei, S.M. Monirvaghefi, M. Salehi, and A. Saatchi, Wear behavior of Ni−P and Ni−P−Al2O3 electroless coatings, Wear, 262(2007), No. 7-8, p. 978.

    Article  Google Scholar 

  45. R. Ravichandran and N. Rajendran, Influence of benzotriazole derivatives on the dezincification of 65–35 brass in sodium chloride, Appl. Surf. Sci., 239(2005), No. 2, p. 182.

    Article  Google Scholar 

  46. G.A. El-Mahdy, A.K.F. Dyab, A.M. Atta, and H.A. Al-Lohedan, Brass Corrosion under a single droplet of NaCl, Int. J. Electrochem. Sci., 8(2013), p. 9858.

    Google Scholar 

  47. M.M. Antonijevic, G.D. Bogdanovic, M.B. Radovanovic, M.B. Petrovic, and A.T. Stamenkovic, Influence of pH and chloride ions on electrochemical behavior of brass in alkaline solution, Int. J. Electrochem. Sci., 4(2009), p. 654.

    Google Scholar 

  48. G.A. El-Mahdy, Electrochemical impedance study on brass corrosion in NaCl and (NH4)2SO4 solutions during cyclic wet−dry conditions, J. Appl. Electrochem., 35(2005), No. 3, p. 347.

    Article  Google Scholar 

  49. I. Milošev and T. Kosec, Electrochemical and spectroscopic study of benzotriazole films formed on copper, copper−zinc alloys and zinc in chloride solution, Chem. Biochem. Eng. Q, 23(2009), No. 1, p. 53.

    Google Scholar 

  50. Z.S. Smialowska, Pitting corrosion of metals, Corros. Sci., 41(1999), No. 9, p. 1743.

    Article  Google Scholar 

  51. B. Szczygieł and M. Kołodziej, Composite Ni/Al2O3 coatings and their corrosion resistance, Electrochim. Acta, 50(2005), No. 20, p. 4188.

    Article  Google Scholar 

  52. A.C. Ciubotariu, L. Benea, M.L. Varsanyi, and V. Dragan, Electrochemical impedance spectroscopy and corrosion behaviour of Al2O3−Ni nano composite coatings, Electrochim. Acta, 53(2008), No. 13, p. 4557.

    Article  Google Scholar 

  53. P. Berçot, E. Peña-Muñoz, and J. Pagetti, Electrolytic composite Ni−PTFE coatings: an adaptation of Guglielmi’s model for the phenomena of incorporation, Surf. Coat. Technol., 157(2002), No. 2-3, p. 282.

    Article  Google Scholar 

  54. H. Koivuluoto and P. Vuoristo, Effect of powder type and composition on structure and mechanical properties of Cu+Al2O3 coatings prepared by using low-pressure cold spray process, J. Therm. Spray Technol., 19(2010), No. 5, p. 1081.

    Article  Google Scholar 

  55. T. Lampke, A. Leopold, D. Dietrich, G. Alisch, and B. Wielage, Correlation between structure and corrosion behaviour of nickel dispersion coatings containing ceramic particles of different sizes, Surf. Coat. Technol., 201(2006), No. 6, p. 3510.

    Article  Google Scholar 

  56. A.S.M.A. Haseeb, H.H. Masjuki, L.J. Ann, and M.A. Fazal, Corrosion characteristics of copper and leaded bronze in palm biodiesel, Fuel Process. Technol., 91(2010), No. 3, p. 329.

    Article  Google Scholar 

  57. M.A. Almomani, W.R. Tyfour, and M.H. Nemrat, Effect of silicon carbide addition on the corrosion behavior of powder metallurgy Cu−30Zn brass in a 3.5 wt% NaCl solution, J. Alloys Compd., 679(2016), p. 104.

    Article  Google Scholar 

  58. K.K. Alaneme and M.O. Bodunrin, Corrosion behavior of alumina reinforced aluminium (6063) metal matrix composites, J. Miner. Mater. Charact. Eng., 10(2011), No. 12, p. 1153.

    Google Scholar 

  59. B.M. Praveen and T.V. Venkatesha, Electrodeposition and properties of Zn-nanosized TiO2 composite coatings, Appl. Surf. Sci., 254(2008), No. 8, p. 2418.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Aliofkhazraei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghani, M., Aliofkhazraei, M. & Askari, M. Cu−Zn−Al2O3 nanocomposites: study of microstructure, corrosion, and wear properties. Int J Miner Metall Mater 24, 462–472 (2017). https://doi.org/10.1007/s12613-017-1427-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1427-0

Keywords

Navigation