Skip to main content
Log in

Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The effects of sericite particle size, rotation speed, and leaching temperature on sericite dissolution and copper extraction in a chalcopyrite bioleaching system were examined. Finer particles, appropriate temperature and rotation speed for Acidithiobacillus ferrooxidans resulted in a higher Al3+ dissolution concentration. The Al3+ dissolution concentration reached its highest concentration of 38.66 mg/L after 48-d leaching when the sericite particle size, temperature, and rotation speed were −43 μm, 30°C, and 160 r/min, respectively. Meanwhile, the sericite particle size, rotation speed, and temperature can affect copper extraction. The copper extraction rate is higher when the sericite particle size is finer. An appropriately high temperature is favorable for copper leaching. The dissolution of sericite fitted the shrinking core model, 1–(2/3)α–(1–α)2/3 = k 1 t, which indicates that internal diffusion is the decision step controlling the overall reaction rate in the leaching process. Scanning electron microscopy analysis showed small precipitates covered on the surface of sericite after leaching, which increased the diffusion resistance of the leaching solution and dissolved ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.R. Watling, The bioleaching of sulphide minerals with emphasis on copper sulphides: a review, Hydrometallurgy, 84(2006), No. 1-2, p. 81.

    Article  Google Scholar 

  2. Y.G. Guo, P. Huang, W.G. Zhang, X.W. Yuan, F.X. Fan, H.L. Wang, J.S. Liu, and Z.H. Wang, Leaching of heavy metals from Dexing copper mine tailings pond, Trans. Nonferrous Met. Soc. China, 23(2013), No. 10, p. 3068.

    Article  Google Scholar 

  3. X.L. Mo, H. Lin, K.B. Fu, Y.B. Dong, and C.Y. Xu, Effect of sericite on bioleaching of chalcopyrite, Chin. J. Nonferrous Met., 22(2012), No. 5, p. 1475.

    Google Scholar 

  4. M. Dopson, L. Lövgren, and B. Dan, Silicate mineral dissolution in the presence of acidophilic microorganisms: Implications for heap bioleaching, Hydrometallurgy, 96(2009), No. 4, p. 288.

    Article  Google Scholar 

  5. V. Ochoaherrera, G. León, Q. Banihani, J.A. Field, and R. Sierraalvarez, Toxicity of copper(II) ions to microorganisms in biological wastewater treatment systems, Sci. Total Environ., 412–413(2011), No. 13, p. 380.

    Article  Google Scholar 

  6. J. Fischer, A. Quentmeier, S. Gansel, V. Sabados, and C.G. Friedrich, Inducible aluminium resistance of Acidiphilium cryptum and aluminium tolerance of other acidophilic bacteria, Arch. Microbiol., 178(2002), No. 6, p. 554.

    Article  Google Scholar 

  7. K.R. Blight and D.E. Ralph, Aluminium sulphate and potassium nitrate effects on batch culture of iron oxidising bacteria, Hydrometallurgy, 92(2008), No. 3-4, p. 130.

    Article  Google Scholar 

  8. M. Suwalsky, B. Norris, F. Villena, F. Cuevas, P. Sotomayor, and P. Zatta, Aluminum fluoride affects the structure and functions of cell membranes, Food Chem. Toxicol., 42(2004), No. 6, p. 925.

    Article  Google Scholar 

  9. Y.B. Dong, H. Lin, H. Wang, X.L. Mo, K.B. Fu, and H.W. Wen, Effects of ultraviolet mutation on bioleaching of low-grade copper tailings, Miner. Eng., 24(2011), No. 8, p. 870.

    Article  Google Scholar 

  10. D. Bingöl, M. Canbazoğlu, and S. Aydoğan, Dissolution kinetics of malachite in ammonia/ammonium carbonate leaching, Hydrometallurgy, 76(2005), No. 1-2, p. 55.

    Article  Google Scholar 

  11. David R. Ely, R. Edwin Garcíab, and M. Thommes, Ostwald–Freundlich diffusion-limited dissolution kinetics of nanoparticles, Powder Technol., 257(2014), p. 120.

    Article  Google Scholar 

  12. A. Sanna, A. Lacinska, M. Styles, and M.M. Maroto-Valer, Silicate rock dissolution by ammonium bisulphate for pH swing mineral CO2 sequestration, Fuel Process. Technol., 120(2010), No. 4, p. 128.

    Google Scholar 

  13. A.A. Baba and F.A. Adekola, A study of dissolution kinetics of a Nigerian galena ore in hydrochloric acid, J. Saudi Chem. Soc., 16(2012), No. 4, p. 377.

    Article  Google Scholar 

  14. M. Gleisner, R.B.H. Jr, and P.C.F. Kockuma, Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen, Chem. Geol., 225(2006), No. 1-2, p. 16.

    Article  Google Scholar 

  15. Z.Y. Ding, Z.L. Yin, H.P. Hu, and Q.Y. Chen, Dissolution kinetics of zinc silicate (hemimorphite) in ammoniacal solution, Hydrometallurgy, 104(2010), No. 2, p. 201.

    Article  Google Scholar 

  16. K.C. Liddell, Shrinking core models in hydrometallurgy: What students are not being told about the pseudo-steady approximation, Hydrometallurgy, 79(2005), No. 1-2, p. 62.

    Article  Google Scholar 

  17. R. Salmimies, M. Mannila, J. Kallas, and A. Häkkinen, Acidic dissolution of hematite: kinetic and thermodynamic investigations with oxalic acid, Int. J. Miner. Process., 110-111(2012), p. 121.

    Article  Google Scholar 

  18. T.J. Hu, G.M. Zeng, and X.Z. Yuan, Leaching kinetics of silver extracted by thiourea from residue in hydrometallurgy of zinc, Chin. J. Nonferrous Met., 11(2001), No. 5, p. 933.

    Google Scholar 

  19. S.H. Ju, M.T. Tang, S.H. Yang, and Y. Li, Dissolution kinetics of smithsonite ore in ammonium chloride solution, Hydrometallurgy, 80(2005), No. 1, p. 67.

    Article  Google Scholar 

  20. V. Safari, G. Arzpeyma, F. Rashchi, and N. Mostoufi, A shrinking particle-shrinking core model for leaching of a zinc ore containing silica, Int. J. Miner. Process., 93(2009), No. 1, p. 79.

    Article  Google Scholar 

  21. A. Amiri, G.D. Ingram, A.V. Bekker, I. Livk, and N.E. Maynard, A multi-stage, multi-reaction shrinking core model for self-inhibiting gas–solid reactions, Adv. Powder Technol., 24(2013), No. 4, p. 728.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51204011) and the Science and Technology Project for the Guidance Teacher of Beijing Excellent Doctoral Dissertation (No. 20121000803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Yb., Li, H., Lin, H. et al. Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction. Int J Miner Metall Mater 24, 369–376 (2017). https://doi.org/10.1007/s12613-017-1416-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1416-3

Keywords

Navigation