Skip to main content
Log in

Inhibition of acid mine drainage and immobilization of heavy metals from copper flotation tailings using a marble cutting waste

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide bearing wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sulfide- bearing wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neutralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment (t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sulfate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.F. Glombitza, Treatment of acid lignite mine flooding water by means of microbial sulfate reduction, Waste Manage., 21(2001), No. 2, p. 197.

    Article  Google Scholar 

  2. A. Akcil and S. Koldas, Acid mine drainage (AMD): causes, treatment and case studies, J. Clean. Prod., 14(2006), No. 12-13, p. 1139.

    Article  Google Scholar 

  3. L. Saria, T. Shimaoka, and K. Miyawaki, Leaching of heavy metals in acid mine drainage, Waste Manage. Res., 24(2006), No. 2, p. 134.

    Article  Google Scholar 

  4. N.O. Egiebor and B. Oni, Acid rock drainage formation and treatment: a review, Asia Pac. J. Chem. Eng., 2(2007), No. 1, p. 47.

    Article  Google Scholar 

  5. B. Ercikdi, F. Cihangir, A. Kesimal, H. Deveci, and I. Alp, Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings, J. Hazard. Mater., 168(2009), No. 2-3, p. 848.

    Article  Google Scholar 

  6. S.H. Yin, A.X. Wu, S.Y. Wang, and C.M. Ai, Effects of bioleaching on the mechanical and chemical properties of waste rocks, Int. J. Miner., Metall. Mater., 19(2012), No. 1, p. 1.

    Article  Google Scholar 

  7. T. Name and C. Sheridan, Remediation of acid mine drainage using metallurgical slags, Miner. Eng., 64(2014), p. 15.

    Article  Google Scholar 

  8. T.M. Bhatti, J.M. Bigham, A. Vuorinen, and O.H. Tuovinen, Chemical and bacterial leaching of metals from black schist sulfide minerals in shake flasks, Int. J. Miner. Process., 110-111(2012), p. 25.

    Article  Google Scholar 

  9. Z. Manafi, H. Abdollahi, and O.H. Tuovinen, Shake flask and column bioleaching of a pyritic porphyry copper sulphide ore, Int. J. Miner. Process., 119(2012), p. 16.

    Article  Google Scholar 

  10. R. Ciccu, M. Ghiani, A. Serci, S. Fadda, R. Peretti, and A. Zucca, Heavy metal immobilization in the mining-contaminated soils using various industrial wastes, Miner. Eng., 16(2003), No. 3, p. 187.

    Article  Google Scholar 

  11. F. Cihangir, B. Ercikdi, A. Kesimal, A. Turan, and H. Deveci, Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage, Miner. Eng., 30(2012), p. 33.

    Article  Google Scholar 

  12. R.K.T. Jha, J. Satur, N. Hiroyoshi, M. Ito, and M. Tsunekava, Suppression of pyrite oxidation by carrier microencapsulation using silicon and catechol, Miner. Process. Extr. Metall. Rev., 33(2012), No. 2, p. 89.

    Article  Google Scholar 

  13. K. Komnitsas, G. Bartzas, and I. Paspaliaris, Efficiency of limestone and red mud barriers: laboratory column studies, Miner. Eng., 17(2004), No. 2, p. 183.

    Article  Google Scholar 

  14. B. Hale, L. Evans, and R. Lambert, Effects of cement or lime on Cd, Co, Cu, Ni, Pb, Sb and Zn mobility in field contaminated and aged soils, J. Hazard. Mater., 199-200(2012), p. 119.

    Article  Google Scholar 

  15. I. Sánchez-Andrea, J.L. Sanz, M.F.M. Bijmans, and A.J.M. Stams, Sulfate reduction at low pH to remediate acid mine drainage, J. Hazard. Mater., 269(2014), p. 98.

    Article  Google Scholar 

  16. C.A. Cravotta III and M.K. Trahan, Limestone drains to increase pH and remove dissolved metals from acidic mine drainage, Appl. Geochem., 14(1999), No. 5, p. 581.

    Article  Google Scholar 

  17. J.C. Fernandez-Caliani and C. Barba-Brioso, Metal immobilization in hazardous contaminated minesoils after marble slurry waste application. A field assessment at the Tharsis mining district (Spain), J. Hazard. Mater., 181(2010), No. 1-3, p. 817.

    Article  Google Scholar 

  18. M.P. Rodríguez-Jordá, F. Garrido, and M.T. García-González, Effect of the addition of industrial by-products on Cu, Zn, Pb and As leachability in a mine sediment, J. Hazard. Mater., 213-214 (2012), p. 46.

    Article  Google Scholar 

  19. R.P. Almedia, A.L. Leite, and A.B. Soares, Reduction of acid rock drainage using steel slag in cover systems over sulfide rock waste piles, Waste Manage. Res., (2015), 33(2014), No. 4, p. 353.

    Article  Google Scholar 

  20. G. Tozsin, A.I. Arol, T. Oztas, and E. Kalkan, Using marble wastes as a soil amendment for acidic soil neutralization, J. Environ. Manage., 133(2014), p. 374.

    Article  Google Scholar 

  21. A.A. Sobek, W.A. Schuller, J.R. Freeman, and R.M. Smith, Field and Laboratory Methods Applicable to Overburdens and Minesoils, 1978, p. 203.

    Google Scholar 

  22. S. Çoruh and O.N. Ergun, Leaching characteristics of copper flotation waste before and after vitfification, J. Environ. Manage., 81(2006), No. 4, p. 333.

    Article  Google Scholar 

  23. S. Çoruh, Leaching behavior and immobilization of copper flotation waste using fly ash, Environ. Prog. Sustainable Energy, 31(2012), No. 2, p. 269.

    Article  Google Scholar 

  24. B.E. Halbert, J.M. Schaver, P.A. Knapp, and D.M. Gorber, Determination of acid generation rates in pyritic mine tailings, [in] 56th Annual Conference of WPCF, Atlanta, 1983.

    Google Scholar 

  25. Guidance on National Interim Waste Acceptance Procedures, Version 1.2 External Consultation Draft, Environmental Agency, UK, (2002).

  26. R.E. Nelson, Carbonate, and gypsum, [in] R.H. Miller, D.R. Keeney, eds., Methods of Soil Analysis, American Society of Agronomy, Madison, (1982), p. 181.

    Google Scholar 

  27. W. Stumm and J.J. Morgan, Aquatic chemistry: an Introduction Emphasizing Chemical Equilibria in Natural Waters, 2nd Ed., Wiley, New York, 1981.

    Google Scholar 

  28. O. Ouakibi, R. Hakkou, and M. Benzaazoua, Phosphate carbonated wastes used as drains for acidic mine drainage passive treatment, Procedia Eng., 83(2014), p. 407.

    Article  Google Scholar 

  29. E.T. Tolonen, A. Sarpola, T. Hu, J. Ramo, and U. Lassi, Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals, Chemosphere, 117(2014), p. 419.

    Article  Google Scholar 

  30. S. Rose and W.C. Elliott, The effects of pH regulation upon the release of sulfate from ferric precipitates formed in acid mine drainage, Appl. Geochem., 15(2000), No. 1, p. 27.

    Article  Google Scholar 

  31. D. Feng, J.S.J. van Deventer, and C. Aldrich, Removal of pollutants from acid mine wastewater using metallurgical by-product slags, Sep. Purif. Technol., 40(2004), No. 1, p. 61.

    Article  Google Scholar 

  32. J. Jurjovec, D.W. Blowes, and C.J. Ptacek, Acid neutralization in mill tailings and the effect of natrojarosite addition, [in] Proceedings of the Sudbury’ 95, Mining and the Environment, CANMET, Energy Mines and Resources, Canada, 1995, p. 29.

    Google Scholar 

  33. E. Mylona, A. Xenidis, and I. Paspaliaris, Inhibition of acid generation from sulphidic wastes by the addition of small amounts of limestone, Miner. Eng., 13(2000), No. 10-11, p. 1161.

    Article  Google Scholar 

  34. A. Kabata-Pendias and H. Pendias, Trace elements in soils, 3rd Ed., CRC Press, Florida, 2001, p. 413.

    Google Scholar 

  35. R. Charlatchka and P. Cambier, Influence of reducing conditions on solubility of trace metals in contaminated soils, Water Air Soil Poll., 118(2000), No. 1, p. 143.

    Article  Google Scholar 

  36. M. Otero, C.B. Lopes, J. Coimbra, T.R. Ferreira, C.M. Silva, Z. Lin, J. Rocha, E. Pereira, and A.C. Duarte, Priority pollutants (Hg2+ and Cd2+) removal from water by ETS-4 titanosilicate, Desalination, 249(2009), No. 2, p. 742.

    Article  Google Scholar 

  37. P. Alvarenga, A.P. Gonçalves, R.M. Fernandes, A. de Varennes, G. Vallini, E. Duarte, and A.C. Cunha-Queda, Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass, Sci. Total Environ., 406(2008), No. 1-2, p. 43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulsen Tozsin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tozsin, G. Inhibition of acid mine drainage and immobilization of heavy metals from copper flotation tailings using a marble cutting waste. Int J Miner Metall Mater 23, 1–6 (2016). https://doi.org/10.1007/s12613-016-1204-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1204-5

Keywords

Navigation