Skip to main content
Log in

Microstructure and microhardness of nanostructured Al−4.6Cu−Mn alloy ribbons

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The microstructural characteristics and microhardness of nanostructured Al−4.6Cu−Mn ribbons produced by melt spinning were investigated using field-emission gun scanning electron microscopy, transmission electron microscopy, and hardness testing, and the results were compared to those of similar ribbons manufactured by direct-chill casting. It is shown that the nanostructure of the as-melt-spun ribbons consists of α-Al dendrites with a secondary dendrite arm spacing of approximately 0.55−0.80 μm and ultrafine eutectic crystals of a nanosized scale of approximately 100−200 nm on dendritic boundaries. The solidification time and cooling rate of 46-μm-thick ribbons were estimated to be 1.3 × 10−6 s and 4.04 × 106 K·s−1, respectively. At an aging temperature of 190°C, the coherent θ″ phase in aged ribbons gradually transforms into nanoscale θ′-phase platelets as the aging time is extended from 2 to 8 h; the rod-like morphology of the T (Al20Cu2Mn3) dispersoid with 120−160-nm diameter also forms, which results in peak aging hardness. The precipitation behaviors of aged ribbons cannot be changed at the high cooling rates of as-cast ribbons. However, a finer and more uniformly distributed microstructure and a supersaturated solid solution at a high cooling rate can shorten the time required to obtain a certain aging hardness before peak hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Okayasu, Y. Ohkura, S. Takeuchi, S. Takasu, H. Ohfuji, and T. Shiraishi, A study of the mechanical properties of an Al-Si-Cu alloy (ADC12) produced by various casting processes, Mater. Sci. Eng. A, 543(2012), p. 185.

    Article  Google Scholar 

  2. B.P. Reis, R.P. França, J.A. Spim, A. Garcia, E.M. da Costa, and C.A. Santos, The effects of dendritic arm spacing (as-cast) and aging time (solution heat-treated) of Al–Cu alloy on hardness, J. Alloys Compd., 549(2013), p. 324.

    Article  Google Scholar 

  3. D.G. Eskin, Suyitno, and L. Katgerman, Mechanical properties in the semi-solid state and hot tearing of aluminium alloys, Prog. Mater. Sci., 49(2004), No. 5, p. 629.

    Article  Google Scholar 

  4. Suyitno, D.G. Eskin, and L. Katgerman, Structure observations related to hot tearing of Al-Cu billets produced by direct-chill casting, Mater. Sci. Eng. A, 420(2006), No. 1-2, p. 1.

    Article  Google Scholar 

  5. D. Eskin, Q. Du, D. Ruvalcaba, and L. Katgerman, Experimental study of structure formation in binary Al-Cu alloys at different cooling rates, Mater. Sci. Eng. A, 405(2005), No. 1-2, p. 1.

    Article  Google Scholar 

  6. L.A. Jacobson, Rapid solidification processing, Mater. Sci. Eng. R, 11(1994), No. 8, p. 355.

    Article  Google Scholar 

  7. R. Trivedi, F. Jin, and I.E. Anderson, Dynamical evolution of microstructure in finely atomized droplets of Al-Si alloys, Acta Mater., 51(2003), No. 2, p. 289.

    Article  Google Scholar 

  8. I. Lichioiu, I. Peter, B. Varga, and M. Rosso, Preparation and structural characterization of rapidly solidified Al-Cu alloys, J. Mater. Sci. Technol., 30(2014), No. 4, p. 394.

    Article  Google Scholar 

  9. Z.W. Chen, J. Zhao, and P. Chen, Microstructure and mechanical properties of nanostructured A8006 ribbons, Mater. Sci. Eng. A, 552(2012), p. 189.

    Article  Google Scholar 

  10. Z.W. Chen, Y.M. Lei, and H.F. Zhang, Structure and properties of nanostructured A357 alloy produced by melt spinning compared with direct chill ingot, J. Alloys Compd., 509(2011), No. 27, p. 7473.

    Article  Google Scholar 

  11. E. Karaköse and M. Keskin, Structural investigations of mechanical properties of Al based rapidly solidified alloys, Mater. Des., 32(2011), No. 10, p. 4970.

    Article  Google Scholar 

  12. L. Bourgeois, C. Dwyer, M. Weyland, J.F. Nie, and B.C. Muddle, Structure and energetics of the coherent interface between the θ' precipitate phase and aluminium in Al-Cu, Acta Mater., 59(2011), No. 18, p. 7043.

    Article  Google Scholar 

  13. S.Y. Hu, M.I. Baskes, M. Stan, and L.Q. Chen, Atomistic calculations of interfacial energies, nucleus shape and size of θ' precipitates in Al-Cu alloys, Acta Mater., 54(2006), No. 18, p. 4699.

    Article  Google Scholar 

  14. A. Guinier, Structure of age-hardened aluminium-copper alloys, Nature, 142(1938), p. 569.

    Article  Google Scholar 

  15. G.D. Preston, Response to the letter of A. Guinier (Ref.14), Nature, 142(1938), p. 570.

    Article  Google Scholar 

  16. S.C. Wang and M.J. Starink, Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys, Int. Mater. Rev., 50(2005), No. 4, p. 193.

    Article  Google Scholar 

  17. A. Guinier, Heterogeneities in solid solutions, Solid State Phys., 9(1959), p. 293.

    Google Scholar 

  18. W.J. Huang, Z.Y. Liu, M. Lin, X.W. Zhou, L. Zhao, A.L. Ning, and S.M. Zeng, Reprecipitation behavior in Al-Cu binary alloy after severe plastic deformation-induced dissolution of θ' particles, Mater. Sci. Eng. A, 546(2012), p. 26.

    Article  Google Scholar 

  19. L. Bourgeois, C. Dwyer, M. Weyland, J.F. Nie, and B.C. Muddle, The magic thicknesses of θ' precipitates in Sn-microalloyed Al-Cu, Acta Mater., 60(2012), No. 2, p. 633.

    Article  Google Scholar 

  20. R. Yoshimura, T.J. Konno, E. Abe, and K. Hiraga, Transmission electron microscopy study of the evolution of precipitates in aged Al-Li-Cu alloys: the θ' and T1 phases, Acta Mater., 51(2003), No. 14, p. 4251.

    Article  Google Scholar 

  21. W.W. Zhang, B. Lin, D.T. Zhang, and Y.Y. Li, Microstructures and mechanical properties of squeeze cast Al-5.0Cu-0.6Mn alloys with different Fe content, Mater. Des., 52(2013), p. 225.

    Article  Google Scholar 

  22. N.A. Belov, A.N. Alabin, and I.A. Matveeva, Optimization of phase composition of Al-Cu-Mn-Zr-Sc alloys for rolled products without requirement for solution treatment and quenching, J. Alloys Compd., 583(2014), p. 206.

    Article  Google Scholar 

  23. H. Jones, Cooling rates during rapid solidification from a chill surface, Mater. Lett., 26(1996), No. 3, p. 133.

    Article  Google Scholar 

  24. V.I. Tkatch, S.N. Denisenko, and O.N. Beloshov, Direct measurements of the cooling rates in the single roller rapid solidification technique, Acta Mater., 45(1997), No. 7, p. 2821.

    Article  Google Scholar 

  25. A. Guinier, The precipitation mechanism of a metal solid solution crystal: case of aluminium copper and aluminium silver system, J. Phys. Radium, 3(1942), No. 7, p. 124.

    Article  Google Scholar 

  26. H. Yoshida, Some aspects on the structure of Guinier-Preston zones in Al-Cu alloys based on high resolution electron microscope observations, Scripta Metall., 22(1988), No. 7, p. 947.

    Article  Google Scholar 

  27. K. Robinson, The unit cell and Brillouin zones of Ni4Mn11Al60 and belated compounds, Philos. Mag. Ser., 43(1952), No. 342, p. 775.

    Article  Google Scholar 

  28. S.C. Wang, C.Z. Li, and M.G. Yan, Study of the new Frank–Kasper phases in Al-Li-Cu-Mg alloys, Acta Metall. Mater., 41(1993), No. 10, p. 2949.

    Article  Google Scholar 

  29. B.C. Muddle and I.J. Polmear, The precipitate O phase in Al-Cu-Mg-Ag alloys, Acta Metall., 37(1989), No. 3, p. 777.

    Article  Google Scholar 

  30. Z.W. Chen, P. Chen, and S.S. Li, Effect of Ce addition on microstructure of Al20Cu2Mn3 twin phase in an Al-Cu-Mn casting alloy, Mater. Sci. Eng. A, 532(2012), p. 606.

    Article  Google Scholar 

  31. S.P. Ringer and K. Hono, Microstructural evolution and age hardening in aluminium alloys: atom probe field-Ion microscopy and transmission electron microscopy studies, Mater. Charact., 44(2000), No. 1-2, p. 101.

    Article  Google Scholar 

  32. J.B.M. Nuyten, Quenched structures and precipitation in Al-Cu alloys with and without trace additions of Cd, Acta Metall., 15(1967), p. 1765.

    Article  Google Scholar 

  33. B. Klobes, O. Balarisi, M. Liu, T.E.M. Staab, and K. Maier, The effect of microalloying additions of Au on the natural ageing of Al-Cu, Acta Mater., 58(2010), No. 19, p. 6379.

    Article  Google Scholar 

  34. C.R. Hutchinson and S.P. Ringer, Precipitation processes in Al-Cu-Mg alloys microalloyed with Si, Metall. Mater. Trans. A, 31(2000), No. 11, p. 2721.

    Article  Google Scholar 

  35. Z.H. Bai, F. Qiu, X.X. Wu, Y.Y. Liu, and Q.C. Jiang, Age hardening and creep resistance of cast Al-Cu alloy modified by praseodymium, Mater. Charact., 86(2013), p. 185.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-wei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Zw., Fan, Qy. & Zhao, K. Microstructure and microhardness of nanostructured Al−4.6Cu−Mn alloy ribbons. Int J Miner Metall Mater 22, 860–867 (2015). https://doi.org/10.1007/s12613-015-1143-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1143-6

Keywords

Navigation