Skip to main content
Log in

Effect of arsenic content and quenching temperature on solidification microstructure and arsenic distribution in iron-arsenic alloys

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The solidification microstructure, grain boundary segregation of soluble arsenic, and characteristics of arsenic-rich phases were systematically investigated in Fe-As alloys with different arsenic contents and quenching temperatures. The results show that the solidification microstructures of Fe-0.5wt%As alloys consist of irregular ferrite, while the solidification microstructures of Fe-4wt%As and Fe-10wt%As alloys present the typical dendritic morphology, which becomes finer with increasing arsenic content and quenching temperature. In Fe-0.5wt%As alloys quenched from 1600 and 1200°C, the grain boundary segregation of arsenic is detected by transmission electron microscopy. In Fe-4wt%As and Fe-10wt%As alloys quenched from 1600 and 1420°C, a fully divorced eutectic morphology is observed, and the eutectic Fe2As phase distributes discontinuously in the interdendritic regions. In contrast, the eutectic morphology of Fe-10wt%As alloy quenched from 1200°C is fibrous and forms a continuous network structure. Furthermore, the area fraction of the eutectic Fe2As phase in Fe-4wt%As and Fe-10wt%As alloys increases with increasing arsenic content and decreasing quenching temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.P. Xian, D. Zhang, and Y.K. Wang, Impurities in steel and their influence on steel properties, Iron steel, 34(1999), No. 10, p. 64.

    Google Scholar 

  2. M. Suzuki, T.J. Piccone, M.C. Flemings, and H.D. Brody, Solidification of highly undercooled Fe–P alloys, Metall. Trans. A, 22(1991), No. 11, p. 2761.

    Article  Google Scholar 

  3. B. Predel and M. Frebel, Precipitation behavior of a-solid solutions of the Fe–Sn system, Metall. Trans., 4(1973), No. 1, p. 243.

    Article  Google Scholar 

  4. Z.Z. Liu, M. Kuwabara, R. Satake, and T. Nagata, Effect of Sn on microstructure and sulfide precipitation in ultra low carbon steel, ISIJ Int., 49(2009), No. 7, p. 1087.

    Article  Google Scholar 

  5. Y. Yuan, K. Sassa, K. Iwai, Q. Wang, J.C. He, and S. Asai, Copper distribution in Fe–Cu and Fe–C–Cu alloys under imposition of an intense magnetic field, ISIJ Int., 48(2008), No. 7, p. 901.

    Article  Google Scholar 

  6. Z. Chen, F. Liu, H.F. Wang, W. Yang, G.C. Yang, and Y.H. Zhou, Formation of single-phase supersaturated solid solution upon solidification of highly undercooled Fe–Cu immiscible system, J. Cryst. Growth, 310(2008), No. 24, p. 5385.

    Article  Google Scholar 

  7. M. Kudoh, M. Tezuka, and K. Matsuura, Effect of niobium on the formation of microstructure and grain boundary in Fe–Nb and Fe–C–Nb alloys, ISIJ Int., 46(2006), No. 12, p. 1871.

    Article  Google Scholar 

  8. D.W. Yi, J.D. Xing, S.Q. Ma, H.G. Fu, Y.F. Li, W. Chen, J.B. Yan, J.J Zhang, and R.R. Zhang, Investigations on microstructures and two-body abrasive wear behavior of Fe–B cast alloy, Tribol. Lett., 45(2012), No. 3, p. 427.

    Article  Google Scholar 

  9. S.Q. Ma, J.D. Xing, G.F. Liu, D.W. Yi, H.G. Fu, J.J. Zhang, and Y.F. Li, Effect of chromium concentration on microstructure and properties of Fe–3.5B alloy, Mater. Sci. Eng. A, 527(2010), No. 26, p. 6800.

    Article  Google Scholar 

  10. X.Z. Zhang, Solidification modes and microstructure of Fe–Cr alloys solidified at different undercoolings, Mater. Sci. Eng. A, 247(1998), No. 1-2, p. 214.

    Article  Google Scholar 

  11. S.V. Subramanian, C.W. Haworth, and D.H. Kirkwood, Development of interdendritic segregation in an iron-arsenic al loy, J. Iron Steel Inst., 206(1968), No. 11, p. 1124.

    Google Scholar 

  12. G.J. Yin, The distribution of arsenic in steel, Iron steel, 16(1981), No. 2, p. 20.

    Google Scholar 

  13. H. Okamoto, The As–Fe (arsenic–iron) system, J. Phase Equilib., 12(1991), No. 4, p. 457.

    Article  Google Scholar 

  14. L. Zhou, N. Wang, L. Zhang, and W.J. Yao, The effects of the minority phase on phase separation in Fe–Sn hypermonotectic alloy, J. Alloys Compd., 555(2013), p. 88.

    Article  Google Scholar 

  15. X.R. Guan, E.Z. Liu, Z. Zheng, Y.S. Yu, J. Tong, and Y.C. Zhai, Solidification behavior and segregation of Re-containing cast Ni-base superalloy with different Cr content, J. Mater. Sci. Technol., 27(2011), No. 2, p. 113.

    Article  Google Scholar 

  16. T. Oi and K. Sato, Autoradiography of Fe–As and Fe–Sn dilute alloys II: grain boundary segregation of the alloying elements, Trans. Jpn. Inst. Met., 10(1969), No. 1, p. 39.

    Article  Google Scholar 

  17. Y.Z. Zhu, J.C. Li, D.M. Liang, and P. Liu, Distribution of arsenic on micro-interfaces in a kind of Cr, Nb and Ti microalloyed low carbon steel produced by a compact strip production process, Mater. Chem. Phys., 130(2011), No. 1-2, p. 524.

    Article  Google Scholar 

  18. Y.Z. Zhu, Z. Zhu, and J.P. Xu, Grain boundary segregation of minor arsenic and nitrogen at elevated temperatures in a microalloyed steel, Int. J. Miner. Metall. Mater., 19(2012), No. 5, p. 399.

    Article  Google Scholar 

  19. M.S. Dargusch, M. Nave, S.D. McDonald, and D.H. StJohn, The effect of aluminium content on the eutectic morphology of high pressure die cast magnesium–aluminium alloys, J. Alloys Compd., 492(2010), No. 1-2, p. L64.

    Article  Google Scholar 

  20. T.P. Zhu, Z.W. Chen, and W. Gao, Effect of cooling conditions during casting on fraction of ß-Mg17Al12 in Mg–9Al–1Zn cast alloy, J. Alloys Compd., 501(2010), No. 2, p. 291.

    Article  Google Scholar 

  21. C. Fan, S.Y. Long, H.D. Yang, X.J. Wang, and J.C. Zhang, Influence of Ce and Mn addition on a-Fe morphology in recycled Al–Si alloy ingots, Int. J. Miner. Metall. Mater., 20(2013), No. 9, p. 890.

    Google Scholar 

  22. D.H. St John, A.K. Dahle, T. Abbott, M.D. Nave, and M. Qian, Solidification of cast magnesium alloys, [in] The 2003 TMS Annual Meeting, San Diego, 2003, p. 95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Wb., Song, B., Huang, Cg. et al. Effect of arsenic content and quenching temperature on solidification microstructure and arsenic distribution in iron-arsenic alloys. Int J Miner Metall Mater 22, 704–713 (2015). https://doi.org/10.1007/s12613-015-1125-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1125-8

Keywords

Navigation