Skip to main content
Log in

Modified disordered carbon prepared from 3,4,9,10-perylenetetracarboxylic dianhydride as an anode material for Li-ion batteries

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

To prepare an anode material for Li-ion batteries with high discharge capacity and good cycling stability, disordered carbon (DC) formed by calcinations of 3,4,9,10-perylenetetracarboxylic dianhydride was modified via an acid treatment using a mixture of HNO3 and H2SO4. The modified disordered carbon (MDC) was characterized by Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, Brunauer-Emmett-Teller (BET) analysis, and scanning electron microscopy (SEM). FTIR spectra confirm the successful introduction of carbonyl groups onto the DC surface. Some pores appear in the columnar structure of MDC, as observed in SEM micrographs. Li+ ions intercalation/deintercalation is facilitated by the modified morphology. Electrochemical tests show that the MDC exhibits a significant improvement in discharge capacity and cycling stability. These results indicate that the MDC has strong potential for use as an anode material in Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Chen, X.L. Li, Q. Zhao, W.B. Cai, and Z. Y. Jiang, Bipolar pulse current charge method for inhibiting the format ion of lithium dendrite, Acta Phys. Chim. Sin., 22(2006), No. 9, p. 115.

    Google Scholar 

  2. M.S. Whittingham, Chalcogenide Battery, US Patent, Appl. US4009052 A, 1977.

    Google Scholar 

  3. J.H. Jeong, D.W. Jung, E.W. Shin, and E.S. Oh, Boron-doped TiO2 anode materials for high-rate lithium ion batteries, J. Alloys Compd., 604(2014), p. 226.

    Article  Google Scholar 

  4. P.C. Lian, J.Y. Wang, D.D. Cai, G.X. Liu, Y.Y. Wang, and H.H. Wang, Design and synthesis of porous nano-sized Sn@C/graphene electrode material with 3D carbon network for high-performance lithium-ion batteries, J. Alloys Compd., 604(2014), p. 188.

    Article  Google Scholar 

  5. P.P. Lv, H.L. Zhao, Z.P. Zeng, J. Wang, T.H. Zhang, and X.W. Li, Facile preparation and electrochemical properties of carbon coated Fe3O4 as anode material for lithium-ion batteries, J. Power Sources, 259(2014), p. 92.

    Article  Google Scholar 

  6. D.S. Wang, M.X. Gao, H.G. Pan, Y.F. Liu, J.H. Wang, S.Q. Li, and H.W. Ge, Enhanced cycle stability of micro-sized Si/C anode material with low carbon content fabricated via spray drying and in situ carbonization, J. Alloys Compd., 604(2014), p. 130.

    Article  Google Scholar 

  7. K.Q. Wu, X.T. Lin, L.Y. Shao, M. Shui, N.B. Long, Y.L. Ren, and J. Shu, Copper/carbon coated lithium sodium titanate as advanced anode material for lithium-ion batteries, J. Power Sources, 259(2014), p. 177.

    Article  Google Scholar 

  8. J. Yi, Y.L. Liu, Y. Wang, X.P. Li, S.J. Hu, and W.S. Li, Synthesis of dandelion-like TiO2 microspheres as anode materials for lithium ion batteries with enhanced rate capacity and cyclic performances, Int. J. Miner. Metall. Mater., 19(2012), No. 11, p. 1058.

    Article  Google Scholar 

  9. Y.B. Chen, Y. Hu, F. Lian, and Q.G. Liu, Synthesis and characterization of spinel Li1.05Cr0.1Mn1.9O4−z Fz as cathode materials for lithium-ion batteries, Int. J. Miner. Metall. Mater., 17(2010), No. 2, p. 220.

    Article  Google Scholar 

  10. S. Yata, H. Kinoshita, M. Komori, N. Ando, T. Kashiwamura, T. Harada, K. Tanaka, and T. Yamabe, Structure and properties of deeply Li-doped polyacenic semiconductor materials beyond C6Li stage, Synth. Met., 62(1994), p. 153.

    Article  Google Scholar 

  11. K. Sato, M. Noguchi, A. Demachi, N. Oki, and M. Endo, A mechanism of lithium storage in disordered carbons, Science, 264(1994), No. 5158, p. 556.

    Article  Google Scholar 

  12. Y. Nishi. Organic Electrolyte Secondary Cell, EU Patent, Appl. 89115940.2, 1996.

    Google Scholar 

  13. M. Alamgir, Q. Zuo, and K.M. Abraham, The behavior of carbon electrodes derived from poly(p-phenylene) in polyacrylonitrile-based polymer electrolyte cells, J. Electrochem. Soc., 141(1994), No. 11, p. L143.

    Article  Google Scholar 

  14. Z.H. Yi, X.Y. Han, C.C. Ai, Y.G. Liang, and J.T. Sun, Reversible lithium intercalation in disordered carbon prepared from 3,4,9,10-perylenetetracarboxylic dianhydride, J. Solid State Electrochem., 12(2008), No. 9, p. 1061.

    Article  Google Scholar 

  15. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, and H. Dai, Nanotube molecular wires as chemical sensors, Science, 287(2000), No. 5453, p. 622.

    Article  Google Scholar 

  16. P.G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science, 287(2000), No. 5459, p. 1801.

    Article  Google Scholar 

  17. S.C. Tsang, Y.K. Chen, P.J.F. Harris, and M.L.H. Green, A simple chemical method of opening and filling carbon nanotubes, Nature, 372(1994), p. 159.

    Article  Google Scholar 

  18. R.M. Lago, S.C. Tsang, K.L. Lu, Y.K. Chen, and M.L.H. Green, Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups, J. Chem. Soc., Chem. Commun., 1995, No. 13, p. 1355.

    Google Scholar 

  19. H. Hiura, T.W. Ebbesen, and K. Tanigaki, Opening and purification of carbon nanotubes in high yields, Adv. Mater., 7(1995), No. 3, p. 275.

    Article  Google Scholar 

  20. J. Liu, A.G. Rinzler, H.J. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, and C.B. Huffman, Fullerene pipes, Science, 280(1998), No. 5367, p. 1253.

    Article  Google Scholar 

  21. B.S. Sherigara, W. Kutner, and F. D’Souza, Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes, Electroanalysis, 15(2003), No. 9, p. 753.

    Article  Google Scholar 

  22. J. Chen, M.A. Hamon, H. Hu, Y.S. Chen, A.M. Rao, P.C. Eklund, and R.C. Haddon, Solution properties of single-walled carbon nanotubes, Science, 282(1998), No. 5386, p. 95.

    Article  Google Scholar 

  23. M.A. Hamon, J. Chen, H. Hu, Y.S. Chen, M.E. Itkis, A.M. Rao, P.C. Eklund, and R.C. Haddon, Dissolution of single-walled carbon nanotubes, Adv. Mater., 11(1999), No. 10, p. 834.

    Article  Google Scholar 

  24. J. Chen, A.M. Rao, S. Lyuksyutov, M.E. Itkis, M.A. Hamon, H. Hu, R.W. Cohn, P.C. Eklund, D.T. Colbert, R.E. Smalley, and R.C. Haddon, Dissolution of full-length single-walled carbon nanotubes, J. Phys. Chem. B, 105(2001), No. 13, p. 2525.

    Article  Google Scholar 

  25. B. Li, Y.F. Liao, Z.J. Shi, and Z.N. Gu, Chemical modification of single-wall carbon nanotube, Chem. J. Chin. Univ., 21(2000), No. 11, p. 1633.

    Google Scholar 

  26. L. Corvazier, L. Messé, C.L.O. Salou, R.N. Young, J.P.A. Fairclough, and A.J. Ryan, Lamellar phases and microemulsions in model ternary blends containing amphiphilic block copolymers, J. Mater. Chem., 11(2001), p. 2864.

    Article  Google Scholar 

  27. W.J. Huang, Y. Lin, S. Taylor, J. Gaillard, A.M. Rao, and Y.P. Sun, Sonication-assisted functionalization and solubilization of carbon nanotubes, Nano Lett., 2(2002), No. 3, p. 231.

    Article  Google Scholar 

  28. K.A. Shiral Fernando, Y. Lin, and Y.P. Sun, High aqueous solubility of functionalized single-walled carbon nanotubes, Langmuir, 20(2004), p. 4777.

    Article  Google Scholar 

  29. M.W. Marshall, S.P. Nita, and J.G. Shapter, Measurement of functionalised carbon nanotube carboxylic acid groups using a simple chemical process, Carbon, 44(2006), p. 1137.

    Article  Google Scholar 

  30. V. Meunier, J. Kephart, C. Roland, and J. Bernholc, Ab initio investigations of lithium diffusion in carbon nanotube systems, Phys. Rev. Lett., 88(2002), Article No. 075506.

  31. X. Han, C. Chang, L. Yuan, T. Sun, and J. Sun, Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials, Adv. Mater., 19(2007), No. 12, p. 1616.

    Article  Google Scholar 

  32. E.R. Buiel, A.E. George, and J.R. Dahn, Model of micropore closure in hard carbon prepared from sucrose, Carbon, 37(1999), No. 9, p. 1399.

    Article  Google Scholar 

  33. E. Dujardin, T.W. Ebbesen, A. Krishnan, and M.M.J. Treacy, Purification of single-shell nanotubes, Adv. Mater., 10(1998), No. 8, p. 611.

    Article  Google Scholar 

  34. T. Zheng, Y.H. Liu, E.W. Fuller, S. Tseng, U. Von Sacken, and J.R. Dahn, Lithium insertion in high capacity carbonaceous materials, J. Electrochem. Soc., 142(1995), No. 8, p. 2581.

    Article  Google Scholar 

  35. T. Zheng, J.S. Xue, and J.R. Dahn, Lithium insertion in hydrogen-containing carbonaceous materials, Chem. Mater., 8(1996), p. 389.

    Article  Google Scholar 

  36. J.K. Lee, K.W. An, J.B. Ju, B.W. Cho, W.I. Cho, D. Park, and K.S. Yun, Electrochemical properties of PAN-based carbon fibers as anodes for rechargeable lithium ion batteries, Carbon, 39(2001), No. 9, p. 1299.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-rong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Fb., Wu, Br., Xiong, Yk. et al. Modified disordered carbon prepared from 3,4,9,10-perylenetetracarboxylic dianhydride as an anode material for Li-ion batteries. Int J Miner Metall Mater 22, 203–209 (2015). https://doi.org/10.1007/s12613-015-1062-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1062-6

Keywords

Navigation