Skip to main content
Log in

Hard magnetization direction and its relation with magnetic permeability of highly grain-oriented electrical steel

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The magnetic properties of highly grain-oriented electrical steel vary along different directions. In order to investigate these properties, standard Epstein samples were cut at different angles to the rolling direction. The hard magnetization direction was found at an angle of 60° to the rolling direction. To compare the measured and fitting curves, when the magnetic field intensity is higher than 7000 A/m, it is appropriate to simulate the relation of magnetic permeability and magnetization angle using the conventional elliptical model. When the magnetic field intensity is less than 3000 A/m, parabolic fitting models should be used; but when the magnetic field intensity is between 3000 and 7000 A/m, hybrid models with high accuracy, as proposed in this paper, should be applied. Piecewise relation models of magnetic permeability and magnetization angle are significant for improving the accuracy of electromagnetic engineering calculations of electrical steel, and these new models could be applied in further industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Moses, Energy efficient electrical steels: magnetic performance prediction and optimization, Scripta Mater., 67(2012), No. 6, p. 560.

    Article  Google Scholar 

  2. Y.F. Fan, H. Yu, J. Sun, P. Tao, C.H. Song, and X. Zeng, Study on precipitation and transition mechanisms from the magnetic properties of silicon steel during annealing, Int. J. Miner. Metall. Mater., 21(2014), No. 4, p. 379.

    Article  Google Scholar 

  3. H. Wang, C.S. Li, T. Zhu, B. Cai, G. Huo, and N. Mohamed, Effect of ball scribing on magnetic Barkhausen noise of grain-oriented electrical steel, J. Mater. Sci. Technol., 29(2013), No. 7, p. 673.

    Article  Google Scholar 

  4. D.Y. Dong, C.S. Liu, S.Y. Chen, and B. Zhang, Characterization of Fe3Si-based coatings on low silicon steel by pulsed Nd:YAG laser cladding, Int. J. Miner. Metall. Mater., 16(2009), No. 2, p. 208.

    Article  Google Scholar 

  5. H. Yamaguchi, H. Pfüzner, and A. Hasenzagl, Magnetostriction measurements on the multidirectional magnetization performance of SiFe steel, J. Magn. Magn. Mater., 320(2008), No. 20, p. e618.

    Article  Google Scholar 

  6. K. Fujisaki and T. Tamaki, Three-dimensional polycrystal magnetic field analysis of thin steel, IEEE Trans. Magn., 45(2009), No. 2, p. 687.

    Article  Google Scholar 

  7. H. Moradi and E. Afjei, Magnetic field analysis of a 9-6 without permanent magnet brushless DC motor by using 3-D finite element method, Electr. Eng., 96(2014), No. 1, p. 15.

    Article  Google Scholar 

  8. Z. Cheng, N. Takahashi, B. Forghani, A.J. Moses, P.I. Anderson, Y. Fan, T. Liu, X. Wang, Z. Zhao, and L. Liu, Modeling of magnetic properties of GO electrical steel based on Epstein combination and loss data weighted processing, IEEE Trans. Magn., 50(2014), No. 1, p. 209.

    Article  Google Scholar 

  9. J. Barros, J. Schneider, K. Verbeken, and Y. Houbaert, On the correlation between microstructure and magnetic losses in electrical steel, J. Magn. Magn. Mater., 320(2008), No. 20, p. 2490.

    Article  Google Scholar 

  10. W. Mazgaj and A. Warzecha, Influence of electrical steel sheet textures on their magnetization curves, Arch. Electr. Eng., 62(2013), No. 3, p. 425.

    Google Scholar 

  11. I Gutierrez-Urrutia, A. Böttcher, L. Lahn, and D. Raabe, Microstructure-magnetic property relations in grain-oriented electrical steels: quantitative analysis of the sharpness of the Goss orientation, J. Mater. Sci., 49(2014), No. 1, p. 269.

    Article  Google Scholar 

  12. B. Cassoret, S. Lopez, J.F. Brudny, and T. Belgrand, Non-segmented grain oriented steel in induction machines, Prog. Electromagn. Res. C, 47(2014), p. 1.

    Article  Google Scholar 

  13. S. Ishikawa, T. Todaka, M. Enokizono, and C. Mauchi, Magnetic characteristic analysis and measurement of three-phase generator utilizing grain-oriented silicon steel sheets, Int. J. Appl. Electromagn. Mech., 33(2010), No. 1–2, p. 415.

    Google Scholar 

  14. A. Ktena, D. Davino, C. Visone, and E. Hristoforou, Stress dependent vector magnetic properties in electrical steel, Phys. B, 435(2014), No. 2, p. 25.

    Article  Google Scholar 

  15. K. Chwastek, J. Szczygłowski, and W. Wilczyński, Modelling magnetic properties of high silicon steel, J. Magn. Magn. Mater., 322(2010), No. 7, p. 799.

    Article  Google Scholar 

  16. N. Bernier, E. Leunis, C. Furtado, T.V. De Putte, and G. Ban, EBSD study of angular deviations from the Goss component in grain-oriented electrical steels, Micron, 54–55(2013), No. 11, p. 43.

    Article  Google Scholar 

  17. V. Permiakov, L. Dupré, A. Pulnikov, and J. Melkebeek, 2D magnetization of grain-oriented 3%-Si steel under uniaxial stress, J. Magn. Magn. Mater., 290–291(2005), No. 2, p. 1495.

    Article  Google Scholar 

  18. P. Handgruber, A. Stermecki, O. Biro, A. Belahcen, and E. Dlala, Three-dimensional eddy-current analysis in steel laminations of electrical machines as a contribution for improved iron loss modeling, IEEE Trans. Ind. Appl., 49(2013), No. 5, p. 2044.

    Article  Google Scholar 

  19. W.X. Zheng and Z.G. Cheng, An inner-constrained separation technique for 3-D finite-element modeling of grain-oriented silicon steel laminations, IEEE Trans. Magn., 48(2012), No. 8, p. 2277.

    Article  Google Scholar 

  20. P. Handgruber, A. Stermecki, O. Bíaró, and G. Ofner, Three-dimensional eddy current loss modeling in steel laminations of skewed induction machines, IEEE Trans. Magn., 49(2013), No. 5, p. 2033.

    Article  Google Scholar 

  21. Z.G. Cheng, N. Takahashi, B. Forghani, G. Gilbert, J. Zhang, L. Liu, Y. Fan, X. Zhang, Y. Du, J. Wang, and C. Jiao, Analysis and measurements of iron loss and flux inside silicon steel laminations, IEEE Trans. Magn., 45(2009), No. 3, p. 1222.

    Article  Google Scholar 

  22. H. Wang, C.S. Li, T. Zhu, N. Chukwuchekwa, B. Cai, and G. Huo, Effect of ball scribing on relative permeability of grain-oriented electrical steel, Acta Metall. Sin. Engl. Lett., 26(2013), No. 5, p. 618.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-sheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, Cs. & Zhu, T. Hard magnetization direction and its relation with magnetic permeability of highly grain-oriented electrical steel. Int J Miner Metall Mater 21, 1077–1082 (2014). https://doi.org/10.1007/s12613-014-1012-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-1012-8

Keywords

Navigation