Skip to main content
Log in

3D stress simulation and parameter design during twin-roll casting of 304 stainless steel based on the Anand model

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

This study first investigated cracks on the surface of an actual steel strip. Formulating the Anand model in ANSYS software, we then simulated the stress field in the molten pool of type 304 stainless steel during the twin-roll casting process. Parameters affecting the stress distribution in the molten pool were analyzed in detail and optimized. After twin-roll casting, a large number of transgranular and intergranular cracks resided on the surface of the thin steel strip, and followed a tortuous path. In the molten pool, stress was enhanced at the exit and at the roller contact positions. The stress at the exit decreased with increasing casting speed and pouring temperature. To ensure high quality of the fabricated strips, the casting speed and pouring temperature should be controlled above 0.7 m/s and 1520°C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Bae, A.K.P. Rao, K.H. Kim, and N.J. Kim, Cladding of Mg alloy with Al by twin-roll casting, Scripta Mater., 64(2011), No. 9, p. 836.

    Article  Google Scholar 

  2. S. Das, N.S. Lim, J.B. Seol, H.W. Kim, and C.G. Park, Effect of the rolling speed on microstructural and mechanical properties of aluminum-magnesium alloys prepared by twin roll casting, Mater. Des., 31(2010), No. 3, p. 1633.

    Article  Google Scholar 

  3. H. Zhao, P.J. Li, and L.J. He, Kinetics of recrystallization for twin-roll casting AZ31 magnesium alloy during homogenization, Int. J. Miner. Metall. Mater., 18(2011), No. 5, p. 570.

    Article  Google Scholar 

  4. Z.W. Chen, J. Zhao, and X.L. Hao, Microstructure and texture evolution of TRC A8006 alloy by homogenization, Int. J. Miner. Metall. Mater., 20(2013), No. 5, p. 433.

    Article  Google Scholar 

  5. L.L. Chang, J.H. Cho, and S.K. Kang, Microstructure and mechanical properties of twin roll cast AM31 magnesium alloy sheet processed by differential speed rolling, Mater. Des., 34(2012), p. 746.

    Article  Google Scholar 

  6. S. Das, N.S. Lim, H.W. Kim, and C.G. Park, Effect of rolling speed on microstructure and age-hardening behaviour of Al-Mg-Si alloy produced by twin roll casting process, Mater. Des., 32(2011), No. 8–9, p. 4603.

    Article  Google Scholar 

  7. B. Wang, J.Y. Zhang, X.M. Li, and W.H. Qi, Simulation of solidification microstructure in twin-roll casting strip, Comput. Mater. Sci., 49(2010), Suppl., p. S135.

    Article  Google Scholar 

  8. Y. Fang, Z.M. Wang, Q.X. Yang, Y.K. Zhang, L.G. Liu, H.Y. Hu, and Y. Zhang, Numerical simulation of the temperature fields of stainless steel with different roller parameters during twin-roll strip casting, Int. J. Miner. Metall. Mater., 16(2009), No. 3, p. 304.

    Article  Google Scholar 

  9. H. Zhao, P.J. Li, and L.J. He, Coupled analysis of temperature and flow during twin-roll casting of magnesium alloy strip, J. Mater. Process. Technol., 211(2011), No. 6, p. 1197.

    Article  Google Scholar 

  10. Y.C. Miao, X.M. Zhang, H.S. Di, and G.D. Wang, Numerical simulation of the fluid flow, heat transfer, and solidification of twin-roll strip casting, J. Mater. Process. Technol., 174(2006), No. 1–3, p. 7.

    Article  Google Scholar 

  11. X.M. Zhang, Z.Y. Jiang, L.M. Yang, X.H. Liu, G.D. Wang, and A.K. Tieu, Modelling of coupling flow and temperature fields in molten pool during twin-roll strip casting process, J. Mater. Process. Technol., 187–188(2007), p. 339.

    Article  Google Scholar 

  12. J. Zeng, R. Koitzsch, H. Pfeifer, and B. Friedrich, Numerical simulation of the twin-roll casting process of magnesium alloy strip, J. Mater. Process. Technol., 209(2009), No. 5, p. 2321.

    Article  Google Scholar 

  13. A. Hadadzadeh and M.A. Wells, Mathematical modeling of thermo-mechanical behavior of strip during twin roll casting of an AZ31 magnesium alloy, J. Magnesium Alloys, 1(2013), No. 2, p. 101.

    Article  Google Scholar 

  14. S. Amit and S. Yogeshwar, Modeling of thermo-mechanical stresses in twin-roll casting of aluminum alloys, Mater. Trans., 43(2002), No. 2, p. 214.

    Article  Google Scholar 

  15. M. Gupta and Y. Sahai, Mathematical modeling of thermally induced stresses in two-roll melt drag thin strip casting of steel, ISIJ Int., 40(2000), No. 2, p. 137.

    Article  Google Scholar 

  16. P. Zhang, Y.K. Zhang, L.G. Liu, X.J. Ren, Y. Zhang, Y. Fang, and Q.X. Yang, Numerical simulation on the stress field of austenite stainless steel during twin-roll strip casting process, Comput. Mater. Sci., 52(2012), No. 1, p. 61.

    Article  Google Scholar 

  17. D.J. Yu, X. Chen, G. Chen, G.Q. Lu, and Z.Q. Wang, Applying Anand model to low-temperature sintered nanoscale silver paste chip attachment, Mater. Des., 30(2009), No. 10, p. 4574.

    Article  Google Scholar 

  18. L.G. Liu, Q. Li, B. Liao, Y.K. Gao, Y.H. Wang, X.J. Ren, and Q.X. Yang, Stress-strain behaviors simulation of high chromium steel at elevated temperatures, J. Mater. Eng. Perform., 19(2010), No. 7, p. 921.

    Article  Google Scholar 

  19. X.D. Hu and D.Y. Ju, Application of Anand’s constitutive model on twin roll casting process of AZ31 magnesium alloy, Trans. Nonferrous Met. Soc. China, 16(2006), Suppl. 1, p. s586.

    Article  Google Scholar 

  20. L.L. Liu, B. Liao, J. Guo, L.G. Liu, H.Y Hu, Y. Fang, and Q.X. Yang, 3D numerical simulation on thermal flow coupling field of stainless steel during twin-roll casting, J. Mater. Eng. Perform., 23(2014), p. 39.

    Article  Google Scholar 

  21. S.B. Brown, K.H. Kim, and L. Anand, An internal variable constitutive model for hot working of metals, Int. J. Plast., 5(1989), No. 2, p. 95.

    Article  Google Scholar 

  22. A.M. Lush, G. Weber, and L. Anand, An implicit time-integration procedure for a set of internal variable constitutive equations for isotropic elasto-viscoplasticity, Int. J. Plast., 5(1989), No. 5, p. 521.

    Article  Google Scholar 

  23. G.G. Weber, A.M. Lush, A. Zavaliangos, and L. Anand, An objective time-integration procedure for isotropic rate-independent and rate-dependent elastic-plastic constitutive equations, Int. J. Plast., 6(1990), No. 6, p. 701.

    Article  Google Scholar 

  24. B. Forbord, B. Andersson, F. Ingvaldsen, O. Austevik, J.A. Horst, and I. Skauvik, The formation of surface segregates during twin roll casting of aluminium alloys, Mater. Sci. Eng. A, 415(2006), No. 1–2, p. 12.

    Article  Google Scholar 

  25. A. Ramacciotti, Thermo-mechanical behavior of the solidified shell in a “funnel-shaped” mold for continuous casting of thin slabs, Steel Res., 59(1988), p. 438.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-xiang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Liu, Yy., Liu, Lg. et al. 3D stress simulation and parameter design during twin-roll casting of 304 stainless steel based on the Anand model. Int J Miner Metall Mater 21, 666–673 (2014). https://doi.org/10.1007/s12613-014-0956-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-0956-z

Keywords

Navigation