Skip to main content
Log in

Effect of hot stamping parameters on the mechanical properties and microstructure of cold-rolled 22MnB5 steel strips

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Thermomechanical experiments were carried out to reproduce the hot stamping process and to investigate the effects of process parameters on the microstructure and mechanical properties of stamped parts. The process parameters, such as austenitizing temperature, soaking time, initial deformation temperature and cooling rate, are studied. The resulting microstructures of specimens were observed and analyzed. To evaluate the mechanical properties of specimens, tensile and hardness tests were also performed at room temperature. The optimum parameters to achieve the highest tensile strength and the desired microstructure were acquired by comparing and analyzing the results. It is indicated that hot deformation changes the transformation characteristics of 22MnB5 steel. Austenite deformation promotes the austenite-to-ferrite transformation and elevates the critical cooling rate to induce a fully martensitic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Åkerström, Modelling and Simulation of Hot Stamping [Dissertation], Luleå University of Technology, Luleå, 2006, p. 1.

    Google Scholar 

  2. Z.W. Xing, J. Bao, and Y.Y. Yang, Numerical simulation of hot stamping of quenchable boron steel, Mater. Sci. Eng. A, 499(2009), No. 1–2, p. 28.

    Article  Google Scholar 

  3. H. Karbasian and A.E. Tekkaya, A review on hot stamping, J. Mater. Process. Technol., 210(2010), No. 15, p. 2103.

    Article  Google Scholar 

  4. M. Merklein, J. Lechler, and M. Geiger, Characterisation of the flow properties of the quenchenable ultra high strength steel 22MnB5, CIRP Ann. Manuf. Technol., 55(2006), No. 1, p. 229.

    Article  Google Scholar 

  5. P.F. Bariani, S. Bruschi, A. Ghiotti, and A. Turetta, Testing formability in the hot stamping of HSS, CIRP Ann. Manuf. Technol., 57(2008), No. 1, p. 265.

    Article  Google Scholar 

  6. J.Y. Min, J.P. Lin, J.Y. Li, and W.H. Bao, Investigation on hot forming limits of high strength steel 22MnB5, Comput. Mater. Sci., 49(2010), No. 2, p. 326.

    Article  Google Scholar 

  7. H.Z. Li, X. Wu, and G.Y. Li, Prediction of forming limit diagrams for 22MnB5 in hot stamping process, J. Mater. Eng. Perform., 22(2013), No. 8, p. 2131.

    Google Scholar 

  8. F. Tondini, P. Bosetti, and S. Bruschi, Heat transfer in hot stamping of high-strength steel sheets, Proc. Inst. Mech. Eng. B, 225(2011), No. 10, p. 1813.

    Article  Google Scholar 

  9. B. Abdulhay, B. Bourouga, and C. Dessain, Experimental and theoretical study of thermal aspects of the hot stamping process, Appl. Therm. Eng., 31(2011), No. 5, p. 674.

    Article  Google Scholar 

  10. C. Boher, S. Le Roux, L. Penazzi, and C. Dessain, Experimental investigation of the tribological behavior and wear mechanisms of tool steel grades in hot stamping of a high-strength boron steel, Wear, 294–295(2012), p. 286.

    Article  Google Scholar 

  11. A. Azushima, K. Uda, and A. Yanagida, Friction behavior of aluminum-coated 22MnB5 in hot stamping under dry and lubricated conditions, J. Mater. Process. Technol., 212(2012), No. 5, p. 1014.

    Article  Google Scholar 

  12. H. Güler, R. Ertan, and R. Özcan, Influence of heat treatment parameters on the microstructure and mechanical properties of boron-alloyed steels, Mater. Test., 54(2012), No. 9, p. 619.

    Article  Google Scholar 

  13. M. Naderi, M. Ketabchi, M. Abbasi, and W. Bleak, Semi-hot stamping as an improved process of hot stamping, J. Mater. Sci. Technol., 27(2011), No. 4, p. 369.

    Article  Google Scholar 

  14. M. Naderi, M. Ketabchi, M. Abbasi, and W. Bleck, Analysis of microstructure and mechanical properties of different high strength carbon steels after hot stamping, J. Mater. Process. Technol., 211(2011), No. 6, p. 1117.

    Article  Google Scholar 

  15. K. Mori, T. Maeno, and K. Mongkolkaji, Tailored die quenching of steel parts having strength distribution using bypass resistance heating in hot stamping, J. Mater. Process. Technol., 213(2013), No. 3, p. 508.

    Article  Google Scholar 

  16. H.L. Yi, S. Ghosh, and H.K.D.H. Bhadeshia, Dual-phase hot-press forming alloy, Mater. Sci. Eng. A, 527(2010), No. 18–19, p. 4870.

    Article  Google Scholar 

  17. Y.G. Zhao, B.D. Ma, H.C. Guo, J. Ma, Q. Yang, and J.S. Song, Electropulsing strengthened 2GPa boron steel with good ductility, Mater. Des., 43(2013), p. 195.

    Article  Google Scholar 

  18. A. Shapiro, Finite element modeling of hot stamping, Steel Res. Int., 80(2009), No. 9, p. 658.

    Google Scholar 

  19. J.J. Cui, C.X. Lei, Z.W. Xing, C.F. Li, and S.M. Ma, Predictions of the mechanical properties and microstructure evolution of high strength steel in hot stamping, J. Mater. Eng. Perform., 21(2012), No. 11, p. 2244.

    Article  Google Scholar 

  20. D.W. Fan, H.S. Kim, and B.C. De Cooman, A review of the physical metallurgy related to the hot press forming of advanced high strength steel, Steel Res. Int., 80(2009), No. 3, p. 241.

    Google Scholar 

  21. P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, and N. Parvin, The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite-martensite dual phase steel sheets, Mater. Sci. Eng. A, 518(2009), No. 1–2, p. 1.

    Article  Google Scholar 

  22. P.G. Xu, Y. Tomota, P. Lukáš, O. Muránsky, and Y. Adachi, Austenite-to-ferrite transformation in low alloy steels during thermomechanically controlled process studied by in situ neutron diffraction, Mater. Sci. Eng. A, 435–436(2006), p. 46.

    Article  Google Scholar 

  23. M. Nikravesh, M. Naderi, and G.H. Akbari, Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel, Mater. Sci. Eng. A, 540(2012), p. 24.

    Article  Google Scholar 

  24. Z.M. Shi, K. Liu, M.Q. Wang, J. Shi, H. Dong, J. Pu, B. Chi, Y.S. Zhang, and L. Jian, Effect of non-isothermal deformation of austenite on phase transformation and microstructure of 22SiMn2TiB steel, Mater. Sci. Eng. A, 535(2012), p. 290.

    Article  Google Scholar 

  25. M. Naderi, Hot Stamping of Ultra High Stength Steels [Dissertation], RWTH Aachen University, Aachen, 2007, p. 91.

    Google Scholar 

  26. S. Morito, H. Yoshida, T. Maki, and X. Huang, Effect of block size on the strength of lath martensite in low carbon steels, Mater. Sci. Eng. A, 438–440(2006), p. 237.

    Article  Google Scholar 

  27. F.R. Xiao, B. Liao, G.Y. Qiao, and S.Z. Guan, Effect of hot deformation on phase transformation kinetics of 86CrMoV7 steel, Mater. Charact., 57(2006), No. 4–5, p. 306.

    Article  Google Scholar 

  28. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd Ed., Chapman & Hall, London, 1992, p. 409.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-yu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Wang, By., Huang, Md. et al. Effect of hot stamping parameters on the mechanical properties and microstructure of cold-rolled 22MnB5 steel strips. Int J Miner Metall Mater 21, 544–555 (2014). https://doi.org/10.1007/s12613-014-0940-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-0940-7

Keywords

Navigation