Skip to main content

Advertisement

Log in

Recent Advances in Intraoperative Lumpectomy Margin Assessment for Breast Cancer

  • Local-Regional Evaluation and Therapy (A Kong, Section Editor)
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Successful breast-conserving surgery is predicated on achieving negative margins (no tumor on ink) at the time of initial surgery. This review will summarize currently available intraoperative margin assessment options and then focus on the most promising intraoperative margin assessment modalities that a breast surgeon will likely see in the next decade.

Recent Findings

Current intraoperative margin assessment options vary in performance, turn-around time, and necessary resources. There are an extensive number of different emerging technologies in varying stages of development, including automated pathologic assessment, traditional and novel imaging modalities, optical imaging, spectroscopy, fluorescence-based imaging, and molecular and nanoparticle-based imaging.

Summary

There is an unmet need for more effective technology to accurately and quickly determine lumpectomy margin status intraoperatively without requiring significant or specialized resources. In addition, this technology must be low-cost, easy-to-use, and not disruptive to operating room workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

    Article  PubMed  Google Scholar 

  2. Kummerow KL, Du L, Penson DF, Shyr Y, Hooks MA. Nationwide trends in mastectomy for early-stage breast cancer. JAMA Surg. 2015;150(1):9–16.

    Article  PubMed  Google Scholar 

  3. Wong SM, Freedman RA, Sagara Y, Aydogan F, Barry WT, Golshan M. Growing use of contralateral prophylactic mastectomy despite no improvement in long-term survival for invasive breast cancer. Ann Surg. 2017;265(3):581–9.

    Article  PubMed  Google Scholar 

  4. Houssami N, Macaskill P, Marinovich ML, Morrow M. The association of surgical margins and local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy: a meta-analysis. Ann Surg Oncol. 2014;21(3):717–30.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Marinovich ML, Noguchi N, Morrow M, Houssami N. Changes in reoperation after publication of consensus guidelines on margins for breast-conserving surgery: a systematic review and meta-analysis. JAMA Surg. 2020;155(10):e203025.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Havel L, Naik H, Ramirez L, Morrow M, Landercasper J. Impact of the SSO-ASTRO margin guideline on rates of re-excision after lumpectomy for breast cancer: a meta-analysis. Ann Surg Oncol. 2019;26(5):1238–44.

    Article  PubMed  Google Scholar 

  7. Schulman AM, Mirrielees JA, Leverson G, Landercasper J, Greenberg C, Wilke LG. Reexcision surgery for breast cancer: an analysis of the American Society of Breast Surgeons (ASBrS) Mastery. Ann Surg Oncol. 2017;24(1):52–8.

    Article  PubMed  Google Scholar 

  8. Kaczmarski K, Wang P, Gilmore R, Overton HN, Euhus DM, Jacobs LK, et al. Surgeon re-excision rates after breast-conserving surgery: a measure of low-value care. J Am Coll Surg. 2019;228(4):504-12.e2.

    Article  PubMed  Google Scholar 

  9. St John ER, Al-Khudairi R, Ashrafian H, Athanasiou T, Takats Z, Hadjiminas DJ, et al. Diagnostic accuracy of intraoperative techniques for margin assessment in breast cancer surgery: a meta-analysis. Ann Surg. 2017;265(2):300–10.

    Article  PubMed  Google Scholar 

  10. Gray RJ, Pockaj BA, Garvey E, Blair S. Intraoperative margin management in breast-conserving surgery: a systematic review of the literature. Ann Surg Oncol. 2018;25(1):18–27.

    Article  PubMed  Google Scholar 

  11. Reyna C, DeSnyder SM. Intraoperative margin assessment in breast cancer management. Surg Oncol Clin N Am. 2018;27(1):155–65.

    Article  PubMed  Google Scholar 

  12. • Partain N, Calvo C, Mokdad A, Colton A, Pouns K, Clifford E, et al. Differences in re-excision rates for breast-conserving surgery using intraoperative 2D versus 3D Tomosynthesis specimen radiograph. Ann Surg Oncol. 2020;27(12):4767–76. This retrospective, single institution study found a lower re-excision rate with no difference in lumpectomy excision volume when comparing intraoperative digital breast tomosynthesis versus routine specimen radiograph.

    Article  PubMed  Google Scholar 

  13. Pradipta AR, Tanei T, Morimoto K, Shimazu K, Noguchi S, Tanaka K. Emerging technologies for real-time intraoperative margin assessment in future breast-conserving surgery. Adv Sci (Weinh). 2020;7(9):1901519.

    Article  CAS  Google Scholar 

  14. Kaufman CS, Jacobson L, Bachman BA, Kaufman LB, Mahon C, Gambrell L-J, et al. Intraoperative digital specimen mammography: rapid, accurate results expedite surgery. Ann Surg Oncol. 2007;14(4):1478–85.

    Article  PubMed  Google Scholar 

  15. Lange M, Reimer T, Hartmann S, Glass Ä, Stachs A. The role of specimen radiography in breast-conserving therapy of ductal carcinoma in situ. Breast. 2016;26:73–9.

    Article  CAS  PubMed  Google Scholar 

  16. McEvoy MP, Landercasper J, Naik HR, Feldman S. Update of the American Society of Breast Surgeons Toolbox to address the lumpectomy reoperation epidemic. Gland Surg. 2018;7(6):536–53.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Racz JM, Glasgow AE, Keeney GL, Degnim AC, Hieken TJ, Jakub JW, et al. Intraoperative pathologic margin analysis and re-excision to minimize reoperation for patients undergoing breast-conserving surgery. Ann Surg Oncol. 2020;27(13):5303–11.

    Article  PubMed  Google Scholar 

  18. Metter DM, Colgan TJ, Leung ST, Timmons CF, Park JY. Trends in the US and Canadian pathologist workforces from 2007 to 2017. JAMA Netw Open. 2019;2(5):e194337-e.

    Article  Google Scholar 

  19. Chagpar AB, Killelea BK, Tsangaris TN, Butler M, Stavris K, Li F, et al. A randomized, controlled trial of cavity shave margins in breast cancer. N Engl J Med. 2015;373(6):503–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dupont E, Tsangaris T, Garcia-Cantu C, Howard-McNatt M, Chiba A, Berger AC, et al. Resection of cavity shave margins in stage 0–iii breast cancer patients undergoing breast conserving surgery: a prospective multicenter randomized controlled trial. Ann Surg. 2021;273(5):876–81.

    Article  PubMed  Google Scholar 

  21. Cartagena LC, McGuire K, Zot P, Pillappa R, Idowu M, Robila V. Breast-conserving surgeries with and without cavity shave margins have different re-excision rates and associated overall cost: institutional and patient-driven decisions for its utilization. Clin Breast Cancer. 2021;21(5):e594–601.

    Article  PubMed  Google Scholar 

  22. Reid VJ, Falk JS, Police AM, Ridgeway CA, Cadena LL, Povoski SP. Minimizing re-excision after breast conserving surgery - a review of radiofrequency spectroscopy for real-time, intraoperative margin assessment. Expert Rev Med Devices. 2021;18(11):1057–68.

    Article  CAS  PubMed  Google Scholar 

  23. Schnabel F, Boolbol SK, Gittleman M, Karni T, Tafra L, Feldman S, et al. A randomized prospective study of lumpectomy margin assessment with use of MarginProbe in patients with nonpalpable breast malignancies. Ann Surg Oncol. 2014;21(5):1589–95.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Blohmer J-U, Tanko J, Kueper J, Groß J, Völker R, Machleidt A. MarginProbe© reduces the rate of re-excision following breast conserving surgery for breast cancer. Arch Gynecol Obstet. 2016;294(2):361–7.

    Article  PubMed  Google Scholar 

  25. LeeVan E, Ho BT, Seto S, Shen J. Use of MarginProbe as an adjunct to standard operating procedure does not significantly reduce re-excision rates in breast conserving surgery. Breast Cancer Res Treat. 2020;183(1):145–51.

    Article  PubMed  Google Scholar 

  26. Brachtel EF, Johnson NB, Huck AE, Rice-Stitt TL, Vangel MG, Smith BL, et al. Spectrally encoded confocal microscopy for diagnosing breast cancer in excision and margin specimens. Lab Invest. 2016;96(4):459–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Elfgen C, Papassotiropoulos B, Varga Z, Moskovszky L, Nap M, Güth U, et al. Comparative analysis of confocal microscopy on fresh breast core needle biopsies and conventional histology. Diagn Pathol. 2019;14(1):58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. • Baxi V, Edwards R, Montalto M, Saha S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod Pathol. 2022;35(1):23–32. This review provides an excellent overview about the development of digital pathology and implementation of artificial intelligence-based methods in cancer care.

    Article  CAS  PubMed  Google Scholar 

  29. Ibrahim A, Gamble P, Jaroensri R, Abdelsamea MM, Mermel CH, Chen P-HC, et al. Artificial intelligence in digital breast pathology: techniques and applications. Breast. 2020;49:267–73.

    Article  PubMed  Google Scholar 

  30. D’Alfonso TM, Ho DJ, Hanna MG, Grabenstetter A, Yarlagadda DVK, Geneslaw L, et al. Multi-magnification-based machine learning as an ancillary tool for the pathologic assessment of shaved margins for breast carcinoma lumpectomy specimens. Mod Pathol. 2021;34(8):1487–94.

    Article  PubMed  Google Scholar 

  31. Papa M, Allweis T, Karni T, Sandbank J, Konichezky M, Diment J, et al. An intraoperative MRI system for margin assessment in breast conserving surgery: Initial results from a novel technique. J Surg Oncol. 2016;114(1):22–6.

    Article  PubMed  Google Scholar 

  32. Krekel NM, Haloua MH, Lopes Cardozo AM, de Wit RH, Bosch AM, de Widt-Levert LM, et al. Intraoperative ultrasound guidance for palpable breast cancer excision (COBALT trial): a multicentre, randomised controlled trial. Lancet Oncol. 2013;14(1):48–54.

    Article  PubMed  Google Scholar 

  33. Moore MM, Whitney LA, Cerilli L, Imbrie JZ, Bunch M, Simpson VB, et al. Intraoperative ultrasound is associated with clear lumpectomy margins for palpable infiltrating ductal breast cancer. Ann Surg. 2001;233(6):761–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sechopoulos I. A review of breast tomosynthesis. Part I. The image acquisition process. Med Phys. 2013;40(1):014301.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Park KU, Kuerer HM, Rauch GM, Leung JWT, Sahin AA, Wei W, et al. Digital breast tomosynthesis for intraoperative margin assessment during breast-conserving surgery. Ann Surg Oncol. 2019;26(6):1720–8.

    Article  PubMed  Google Scholar 

  36. DiCorpo D, Tiwari A, Tang R, Griffin M, Aftreth O, Bautista P, et al. The role of Micro-CT in imaging breast cancer specimens. Breast Cancer Res Treat. 2020;180(2):343–57.

    Article  PubMed  Google Scholar 

  37. Qiu SQ, Dorrius MD, de Jongh SJ, Jansen L, de Vries J, Schröder CP, et al. Micro-computed tomography (micro-CT) for intraoperative surgical margin assessment of breast cancer: a feasibility study in breast conserving surgery. Eur J Surg Oncol. 2018;44(11):1708–13.

    Article  PubMed  Google Scholar 

  38. • Kulkarni SA, Kulkarni K, Schacht D, Bhole S, Reiser I, Abe H, et al. High-resolution Full-3D specimen imaging for lumpectomy margin assessment in breast cancer. Ann Surg Oncol. 2021;28(10):5513–24. This two-institution study demonstrates superior results of a volumetric specimen imager micro-CT system compared to routine specimen radiograph and digital breast tomosynthesis.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Debacker JM, Schelfhout V, Brochez L, Creytens D, D'Asseler Y, Deron P, et al. High-resolution (18)F-FDG PET/CT for assessing three-dimensional intraoperative margins status in malignancies of the head and neck, a proof-of-concept. J Clin Med. 2021;10(16):3737. https://doi.org/10.3390/jcm10163737.

  40. Göker M, Marcinkowski R, Van Bockstal M, Keereman V, Van Holen R, Van Dorpe J, et al. 18F-FDG micro-PET/CT for intra-operative margin assessment during breast-conserving surgery. Acta Chir Belg. 2020;120(5):366–74.

    Article  PubMed  Google Scholar 

  41. Ciarrocchi E, Belcari N. Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences. EJNMMI Physics. 2017;4(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Grootendorst MR, Cariati M, Pinder SE, Kothari A, Douek M, Kovacs T, et al. Intraoperative assessment of tumor resection margins in breast-conserving surgery using (18)F-FDG Cerenkov luminescence imaging: a first-in-human feasibility study. J Nucl Med. 2017;58(6):891–8.

    Article  CAS  PubMed  Google Scholar 

  43. Jurrius PAGT, Grootendorst MR, Krotewicz M, Cariati M, Kothari A, Patani N, et al. Intraoperative. EJNMMI Res. 2021;11(1):28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia. 2000;2(1–2):9–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nguyen FT, Zysk AM, Chaney EJ, Kotynek JG, Oliphant UJ, Bellafiore FJ, et al. Intraoperative evaluation of breast tumor margins with optical coherence tomography. Can Res. 2009;69(22):8790.

    Article  CAS  Google Scholar 

  46. Ha R, Friedlander LC, Hibshoosh H, Hendon C, Feldman S, Ahn S, et al. Optical coherence tomography: a novel imaging method for post-lumpectomy breast margin assessment—a multi-reader study. Acad Radiol. 2018;25(3):279–87.

    Article  PubMed  Google Scholar 

  47. Zysk AM, Chen K, Gabrielson E, Tafra L, May Gonzalez EA, Canner JK, et al. Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: results of a multicenter study. Ann Surg Oncol. 2015;22(10):3356–62.

    Article  PubMed  PubMed Central  Google Scholar 

  48. • Schmidt H, Connolly C, Jaffer S, Oza T, Weltz CR, Port ER, et al. Evaluation of surgically excised breast tissue microstructure using wide-field optical coherence tomography. Breast J. 2020;26(5):917–23. This pilot study shows excellent accuracy of wide-field optical coherence tomography to assess margin status in lumpectomy and shave margin specimens.

    Article  PubMed  Google Scholar 

  49. Yang H, Zhang S, Liu P, Cheng L, Tong F, Liu H, et al. Use of high-resolution full-field optical coherence tomography and dynamic cell imaging for rapid intraoperative diagnosis during breast cancer surgery. Cancer. 2020;126 Suppl 16:3847–56.

    Article  PubMed  CAS  Google Scholar 

  50. Dixon JM, Renshaw L, Young O, Kulkarni D, Saleem T, Sarfaty M, et al. Intra-operative assessment of excised breast tumour margins using ClearEdge imaging device. Eur J Surg Oncol. 2016;42(12):1834–40.

    Article  CAS  PubMed  Google Scholar 

  51. St John ER, Balog J, McKenzie JS, Rossi M, Covington A, Muirhead L, et al. Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the identification of breast pathology: towards an intelligent knife for breast cancer surgery. Breast Cancer Res. 2017;19(1):59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Gauvin G, Yeo CT, Ungi T, Merchant S, Lasso A, Jabs D, et al. Real-time electromagnetic navigation for breast-conserving surgery using NaviKnife technology: a matched case-control study. Breast J. 2020;26(3):399–405.

    Article  PubMed  Google Scholar 

  53. Bourgeois P, Veys I, Noterman D, De Neubourg F, Chintinne M, Vankerckhove S, et al. Near-infrared fluorescence imaging of breast cancer and axillary lymph nodes after intravenous injection of free indocyanine green. Front Oncol. 2021;11:602906. https://doi.org/10.3389/fonc.2021.602906.

  54. Pop FC, Veys I, Vankerckhove S, Barbieux R, Chintinne M, Moreau M, et al. Absence of residual fluorescence in the surgical bed at near-infrared fluorescence imaging predicts negative margins at final pathology in patients treated with breast-conserving surgery for breast cancer. Eur J Surg Oncol. 2021;47(2):269–75.

    Article  PubMed  Google Scholar 

  55. Mondal SB, Gao S, Zhu N, Habimana-Griffin L, Akers WJ, Liang R, et al. Optical see-through cancer vision goggles enable direct patient visualization and real-time fluorescence-guided oncologic surgery. Ann Surg Oncol. 2017;24(7):1897–903.

    Article  PubMed  PubMed Central  Google Scholar 

  56. McNicholas K, MacGregor MN, Gleadle JM. In order for the light to shine so brightly, the darkness must be present—why do cancers fluoresce with 5-aminolaevulinic acid? Br J Cancer. 2019;121(8):631–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. • Ottolino-Perry K, Shahid A, DeLuca S, Son V, Sukhram M, Meng F, et al. Intraoperative fluorescence imaging with aminolevulinic acid detects grossly occult breast cancer: a phase II randomized controlled trial. Breast Cancer Res. 2021;23(1):72. This ongoing single center Phase 2 randomized control trial establishes the safety and clinical feasibility of the 5-ALA fluorescence-based PRODIGI® imaging system.

  58. Schwarz J, Schmidt H. Technology for intraoperative margin assessment in breast cancer. Ann Surg Oncol. 2020;27(7):2278–87.

  59. Jin M-Z, Jin W-L. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther. 2020;5(1):166.

    Article  PubMed  PubMed Central  Google Scholar 

  60. •• Voskuil FJ, Steinkamp PJ, Zhao T, van der Vegt B, Koller M, Doff JJ, et al. Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery. Nat Commun. 2020;11(1):3257. This multi-tumor study demonstrates excellent performance of the pH-activatable nanoprobe OMN-100 fluorescence imaging system in margin assessment of both tumor bed/cavity and ex vivo specimens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sun T, Jiang D, Zhang L, Su Q, Mao W, Jiang C. Expression profile of cathepsins indicates the potential of cathepsins B and D as prognostic factors in breast cancer patients. Oncol Lett. 2016;11(1):575–83.

    Article  CAS  PubMed  Google Scholar 

  62. Talieri M, Papadopoulou S, Scorilas A, Xynopoulos D, Arnogianaki N, Plataniotis G, et al. Cathepsin B and cathepsin D expression in the progression of colorectal adenoma to carcinoma. Cancer Lett. 2004;205(1):97–106.

    Article  CAS  PubMed  Google Scholar 

  63. Whitley MJ, Cardona DM, Lazarides AL, Spasojevic I, Ferrer JM, Cahill J, et al. A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci Transl Med. 2016;8(320):320ra4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Smith BL, Gadd MA, Lanahan CR, Rai U, Tang R, Rice-Stitt T, et al. Real-time, intraoperative detection of residual breast cancer in lumpectomy cavity walls using a novel cathepsin-activated fluorescent imaging system. Breast Cancer Res Treat. 2018;171(2):413–20.

    Article  PubMed  PubMed Central  Google Scholar 

  65. • Smith BL, Lanahan CR, Specht MC, Kelly BN, Brown C, Strasfeld DB, et al. Feasibility study of a novel protease-activated fluorescent imaging system for real-time, intraoperative detection of residual breast cancer in breast conserving surgery. Ann Surg Oncol. 2020;27(6):1854–61. This feasibility study establishes the excellent performance of the protease-activated LUM015 fluorescence imaging system in margin assessment of both tumor bed/cavity and ex vivo specimens.

    Article  PubMed  PubMed Central  Google Scholar 

  66. •• Lanahan CR, Kelly BN, Gadd MA, Specht MC, Brown CL, Hughes KS, et al. Performance of a novel protease-activated fluorescent imaging system for intraoperative detection of residual breast cancer during breast conserving surgery. Breast Cancer Res Treat. 2021;187(1):145–53. This single institution follow-up study reports the ability of the LUM imaging system to identify multiple breast cancer types, its performance to be unaffected by breast tissue density or menopausal status, and that it does not affect routine histopathologic assessment and tumor receptor testing.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina W. F. Yen.

Ethics declarations

Conflict of Interest

Thomas Luo, Tongtong Lu, and Tina W.F. Yen declare that they have no conflict of interest.

Bing Yu declares a patent US 12/680,302 issued, and a patent US 12/680,305 issued.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Local–Regional Evaluation and Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, T., Lu, T., Yu, B. et al. Recent Advances in Intraoperative Lumpectomy Margin Assessment for Breast Cancer. Curr Breast Cancer Rep 14, 93–102 (2022). https://doi.org/10.1007/s12609-022-00451-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-022-00451-5

Keywords

Navigation