Skip to main content

Advertisement

Log in

Androgen Receptor-Targeted Therapy for Breast Cancer

  • Systemic Therapies (M Liu and T Haddad, Section Editors)
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Emerging evidence has identified the androgen receptor (AR) pathway as a potential driver for breast cancer (BC) carcinogenesis. The prevalence of AR expression differs across breast cancer subtypes, and its prognostic role in BC is not clear. Triple-negative breast cancer (TNBC) is a heterogeneously diverse disease, which includes a subset that may be androgen driven. This review will discuss the role of AR across the differing subtypes of BC and summarize the most recent clinical trial data for the use of androgen-directed therapy in the treatment of AR+ breast cancer, with a particular emphasis on TNBC.

Recent Findings

Preclinical and clinical data support the activity of the anti-androgen bicalutamide and more recent, next-generation, AR-targeted agents such as enzalutamide in targeting the AR in TNBC. In addition, novel agents which reduce androgen production such as abiraterone acetate and seviteronel are now being tested in BC. As our understanding of the interplay between AR and signaling pathways involving ER and HER2 grows, dual pathway inhibition may prove to be beneficial through informative, combinatorial approaches such as AR antagonism with CDK4/6 pathway inhibitors or PI3K inhibitors.

Summary

Over the recent years, there is accumulating evidence that AR signaling is a relevant driver for some subsets of breast cancer. Several agents have now consistently demonstrated a signal of activity when targeting the androgen receptor in TNBC in particular. We need to better define which patients are most likely to benefit from an AR-directed approach. Ongoing and future trials aim to clarify the role of targeting AR with single agent and combinatorial therapies in both the metastatic and adjuvant setting. It is hoped that these trials, which incorporate informative correlative components, will further our understanding of the biology of AR+ BC and will show the way to an increased number of treatment options and improved outcomes for our patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15 Pt 1):4429–34.

    Article  PubMed  Google Scholar 

  2. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer registry. Cancer. 2007;109(9):1721–8.

    Article  PubMed  Google Scholar 

  3. Haffty BG, Yang Q, Reiss M, Kearney T, Higgins SA, Weidhaas J, et al. Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol. 2006;24(36):5652–7.

    Article  PubMed  Google Scholar 

  4. Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26(8):1275–81.

    Article  PubMed  Google Scholar 

  5. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci. 2001;98(19):10869–74.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    Article  CAS  PubMed  Google Scholar 

  7. Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer. Mol Oncol. 2011;5(1):5–23.

    Article  CAS  PubMed  Google Scholar 

  8. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Claessens F, Denayer S, Van Tilborgh N, Kerkhofs S, Helsen C, Haelens A. Diverse roles of androgen receptor (AR) domains in AR-mediated signaling. Nucl Recept Signal. 2008;6:e008.

    PubMed  PubMed Central  Google Scholar 

  10. Gelmann EP. Molecular biology of the androgen receptor. J Clin Oncol. 2002;20(13):3001–15.

    Article  CAS  PubMed  Google Scholar 

  11. Lee HJ, Chang C. Recent advances in androgen receptor action. Cell Mol Life Sci. 2003;60(8):1613–22.

    Article  CAS  PubMed  Google Scholar 

  12. Qi J-P, Yang Y-I, Zhu H, Wang J, Jia Y, Liu N, et al. Expression of the androgen receptor and its correlation with molecular subtypes in 980 Chinese breast cancer patients. Breast Cancer: Basic Res. 2011;6(BCBCR Expression-of-the-Androgen-Receptor-and-its-Correlation-with-Molecular2):1–8.

    Google Scholar 

  13. Collins LC, Cole KS, Marotti JD, Hu R, Schnitt SJ, Tamimi RM. Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses’ Health Study. Mod Pathol. 2011;24(7):924–31.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mrklic I, Pogorelic Z, Capkun V, Tomic S. Expression of androgen receptors in triple negative breast carcinomas. Acta Histochem. 2013;115(4):344–8.

    Article  CAS  PubMed  Google Scholar 

  15. Safarpour D, Pakneshan S, Tavassoli FA. Androgen receptor (AR) expression in 400 breast carcinomas: is routine AR assessment justified? Am J Cancer Res. 2014;4(4):353–68.

    PubMed  PubMed Central  Google Scholar 

  16. Vera-Badillo FE, Templeton AJ, de Gouveia P, Diaz-Padilla I, Bedard PL, Al-Mubarak M, et al. Androgen receptor expression and outcomes in early breast cancer: a systematic review and meta-analysis. J Natl Cancer Inst. 2014;106(1):djt319.

    Article  PubMed  Google Scholar 

  17. Micello D, Marando A, Sahnane N, Riva C, Capella C, Sessa F. Androgen receptor is frequently expressed in HER2-positive, ER/PR-negative breast cancers. Virchows Arch. 2010;457(4):467–76.

    Article  CAS  PubMed  Google Scholar 

  18. Park S, Koo J, Park HS, Kim JH, Choi SY, Lee JH, et al. Expression of androgen receptors in primary breast cancer. Ann Oncol. 2010;21(3):488–92.

    Article  CAS  PubMed  Google Scholar 

  19. Thike AA, Yong-Zheng Chong L, Cheok PY, Li HH, Wai-Cheong Yip G, Huat Bay B, et al. Loss of androgen receptor expression predicts early recurrence in triple-negative and basal-like breast cancer. Mod Pathol. 2014;27(3):352–60.

    CAS  PubMed  Google Scholar 

  20. • Gucalp A, Tolaney S, Isakoff SJ, Ingle JN, Liu MC, Carey LA, et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic Breast Cancer. Clin Cancer Res. 2013;19(19):5505–12. This study was the first to demonstate the proof of concept for the use of targeting the androgen receptor in AR+ triple-negative breast cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. • Traina TA, Miller K, Yardley DA, O'Shaughnessy J, Cortes J, Awada A, et al. Results from a phase 2 study of enzalutamide (ENZA), an androgen receptor (AR) inhibitor, in advanced AR+ triple-negative breast cancer (TNBC). J Clin Oncol. 2015;33(15_suppl):1003. This is the largest study of an agent targeting the andorgen receptor in triple-negative breast cancer to date. There were both complete responses and partial responses observed with enzaluatmide, which were not seen in the study of bicalutamide in AR+ triple-negative breast cancer. In addition the results of AR staining by IHC suggested that AR prevalence may be higher that previoulsy reported and therefore targeting AR potentially could be a therapeutic option for a significant proportion of triple-negative breast cancer patients.

    Google Scholar 

  22. Bonnefoi H, Grellety T, Tredan O, Saghatchian M, Dalenc F, Mailliez A, et al. A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1). Ann Oncol. 2016;27(5):812–8.

    Article  CAS  PubMed  Google Scholar 

  23. Qu Q, Mao Y, Fei XC, Shen KW. The impact of androgen receptor expression on breast cancer survival: a retrospective study and meta-analysis. PLoS One. 2013;8(12):e82650.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hu R, Dawood S, Holmes MD, Collins LC, Schnitt SJ, Cole K, et al. Androgen receptor expression and breast cancer survival in postmenopausal women. Clin Cancer Res. 2011;17(7):1867–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Castellano I, Allia E, Accortanzo V, Vandone AM, Chiusa L, Arisio R, et al. Androgen receptor expression is a significant prognostic factor in estrogen receptor positive breast cancers. Breast Cancer Res Treat. 2010;124(3):607–17.

    Article  CAS  PubMed  Google Scholar 

  26. Elebro K, Borgquist S, Simonsson M, Markkula A, Jirstrom K, Ingvar C, et al. Combined androgen and estrogen receptor status in breast cancer: treatment prediction and prognosis in a population-based prospective cohort. Clin Cancer Res. 2015;21(16):3640–50.

    Article  CAS  PubMed  Google Scholar 

  27. Aleskandarany MA, Abduljabbar R, Ashankyty I, Elmouna A, Jerjees D, Ali S, et al. Prognostic significance of androgen receptor expression in invasive breast cancer: transcriptomic and protein expression analysis. Breast Cancer Res Treat. 2016;159(2):215–27.

    Article  CAS  PubMed  Google Scholar 

  28. Gonzalez-Angulo AM, Stemke-Hale K, Palla SL, Carey M, Agarwal R, Meric-Berstam F, et al. Androgen receptor levels and association with PIK3CA mutations and prognosis in breast cancer. Clin Cancer Res. 2009;15(7):2472–8.

    Article  CAS  PubMed  Google Scholar 

  29. Pistelli M, Caramanti M, Biscotti T, Santinelli A, Pagliacci A, De Lisa M, et al. Androgen receptor expression in early triple-negative breast cancer: clinical significance and prognostic associations. Cancer. 2014;6(3):1351–62.

    Article  Google Scholar 

  30. McGhan LJ, McCullough AE, Protheroe CA, Dueck AC, Lee JJ, Nunez-Nateras R, et al. Androgen receptor-positive triple negative breast cancer: a unique breast cancer subtype. Ann Surg Oncol. 2014;21(2):361–7.

    Article  PubMed  Google Scholar 

  31. He J, Peng R, Yuan Z, Wang S, Peng J, Lin G, et al. Prognostic value of androgen receptor expression in operable triple-negative breast cancer: a retrospective analysis based on a tissue microarray. Med Oncol (Northwood, London, England). 2012;29(2):406–10.

    Article  CAS  Google Scholar 

  32. Rakha EA, El-Sayed ME, Green AR, Lee AH, Robertson JF, Ellis IO. Prognostic markers in triple-negative breast cancer. Cancer. 2007;109(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  33. Loibl S, Muller BM, von Minckwitz G, Schwabe M, Roller M, Darb-Esfahani S, et al. Androgen receptor expression in primary breast cancer and its predictive and prognostic value in patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 2011;130(2):477–87.

    Article  CAS  PubMed  Google Scholar 

  34. Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene. 2005;24(29):4660–71.

    Article  CAS  PubMed  Google Scholar 

  35. Doane AS, Danso M, Lal P, Donaton M, Zhang L, Hudis C, et al. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene. 2006;25(28):3994–4008.

    Article  CAS  PubMed  Google Scholar 

  36. Liao DJ, Dickson RB. Roles of androgens in the development, growth, and carcinogenesis of the mammary gland. J Steroid Biochem Mol Biol. 2002;80(2):175–89.

    Article  CAS  PubMed  Google Scholar 

  37. Isola JJ. Immunohistochemical demonstration of androgen receptor in breast cancer and its relationship to other prognostic factors. J Pathol. 1993;170(1):31–5.

    Article  CAS  PubMed  Google Scholar 

  38. McNamara KM, Moore NL, Hickey TE, Sasano H, Tilley WD. Complexities of androgen receptor signalling in breast cancer. Endocr Relat Cancer. 2014;21(4):T161–81.

    Article  CAS  PubMed  Google Scholar 

  39. Fioretti FM, Sita-Lumsden A, Bevan CL, Brooke GN. Revising the role of the androgen receptor in breast cancer. J Mol Endocrinol. 2014;52(3):R257–65.

    Article  CAS  PubMed  Google Scholar 

  40. Naderi A, Hughes-Davies L. A functionally significant cross-talk between androgen receptor and ErbB2 pathways in estrogen receptor negative breast cancer. Neoplasia (New York, NY). 2008;10(6):542–8.

    Article  CAS  Google Scholar 

  41. Goldenberg IS, Waters M, Ravdin RS, Ansfield FJ, Segaloff A. Androgenic therapy for advanced breast cancer in women: a report of the cooperative breast cancer group. JAMA. 1973;223(11):1267–8.

    Article  CAS  PubMed  Google Scholar 

  42. Ingle JN, Twito DI, Schaid DJ, Cullinan SA, Krook JE, Mailliard JA, et al. Combination hormonal therapy with tamoxifen plus fluoxymesterone versus tamoxifen alone in postmenopausal women with metastatic breast cancer. An updated analysis. Cancer. 1991;67(4):886–91.

    Article  CAS  PubMed  Google Scholar 

  43. Manni A, Arafah BM, Pearson OH. Androgen-induced remissions after antiestrogen and hypophysectomy in stage IV breast cancer. Cancer. 1981;48(11):2507–9.

    Article  CAS  PubMed  Google Scholar 

  44. Tormey DC, Lippman ME, Edwards BK, Cassidy JG. Evaluation of tamoxifen doses with and without fluoxymesterone in advanced breast cancer. Ann Intern Med. 1983;98(2):139–44.

    Article  CAS  PubMed  Google Scholar 

  45. Szelei J, Jimenez J, Soto AM, Luizzi MF, Sonnenschein C. Androgen-induced inhibition of proliferation in human breast cancer MCF7 cells transfected with androgen receptor. Endocrinology. 1997;138(4):1406–12.

    Article  CAS  PubMed  Google Scholar 

  46. Chia K, O'Brien M, Brown M, Lim E. Targeting the androgen receptor in breast cancer. Curr Oncol Rep. 2015;17(2):4.

    Article  PubMed  Google Scholar 

  47. Cochrane DR, Bernales S, Jacobsen BM, Cittelly DM, Howe EN, D'Amato NC, et al. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res. 2014;16(1):R7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Birrell SN, Bentel JM, Hickey TE, Ricciardelli C, Weger MA, Horsfall DJ, et al. Androgens induce divergent proliferative responses in human breast cancer cell lines. J Steroid Biochem Mol Biol. 1995;52(5):459–67.

    Article  CAS  PubMed  Google Scholar 

  49. Birrell SN, Hall RE, Tilley WD. Role of the androgen receptor in human breast cancer. J Mammary Gland Biol Neoplasia. 1998;3(1):95–103.

    Article  CAS  PubMed  Google Scholar 

  50. Garay JP, Karakas B, Abukhdeir AM, Cosgrove DP, Gustin JP, Higgins MJ, et al. The growth response to androgen receptor signaling in ERalpha-negative human breast cells is dependent on p21 and mediated by MAPK activation. Breast Cancer Res. 2012;14(1):R27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hickey TE, Robinson JL, Carroll JS, Tilley WD. Minireview: the androgen receptor in breast tissues: growth inhibitor, tumor suppressor, oncogene? Mol Endocrinol (Baltimore, MD). 2012;26(8):1252–67.

    Article  CAS  Google Scholar 

  52. Agoff SN, Swanson PE, Linden H, Hawes SE, Lawton TJ. Androgen receptor expression in estrogen receptor-negative breast cancer. Immunohistochemical, clinical, and prognostic associations. Am J Clin Pathol. 2003;120(5):725–31.

    Article  CAS  PubMed  Google Scholar 

  53. Vranic S, Tawfik O, Palazzo J, Bilalovic N, Eyzaguirre E, Lee LM, et al. EGFR and HER-2/neu expression in invasive apocrine carcinoma of the breast. Mod Pathol. 2010;23(5):644–53.

    Article  CAS  PubMed  Google Scholar 

  54. Ni M, Chen Y, Lim E, Wimberly H, Bailey ST, Imai Y, et al. Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell. 2011;20(1):119–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Scher HI, Fizazi K, Saad F, Taplin M-E, Sternberg CN, Miller K, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367(13):1187–97.

    Article  CAS  PubMed  Google Scholar 

  56. Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371(5):424–33.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Penson DF, Armstrong AJ, Concepcion R, Agarwal N, Olsson C, Karsh L, et al. Enzalutamide versus bicalutamide in castration-resistant prostate cancer: the STRIVE trial. J Clin Oncol. 2016;34(18):2098–106.

    Article  CAS  PubMed  Google Scholar 

  58. Schwartzberg LS, Yardley DA, Elias AD, Patel M, LoRusso P, Burris HA, et al. A phase I/Ib study of enzalutamide alone and in combination with endocrine therapies in women with advanced breast cancer. Clin Cancer Res. 2017;23(15):4046–54.

    Article  CAS  PubMed  Google Scholar 

  59. • Traina TA, Yardley DA, Schwartzberg LS, et al. Overall survival in patients with diagnostic positive (Dx+) breast cancer: subgroup analysis from a phase 2 study of enzalutamide, an androgen receptor inhibitor in AR+ triple-negative breast cancer treated with 0–1 prior lines of therapy. J Clin Oncol. 2017;35(suppl;1089):1089. The updated results of this study demonstrated that patients who were diagnostic positive by a genomic biomarker had improved outcomes compared to patients with biomarker negative tumors. This data is provocative and it is unknown at this time if AR+ TNBC portends an inherently better prognosis or if improved outcomes are a result of AR antagonism. A denfinitive randomized phase III trial would be attracitve to answer this question.

  60. O'Shaughnessy J, Campone M, Brain E, Neven P, Hayes D, Bondarenko I, et al. Abiraterone acetate, exemestane or the combination in postmenopausal patients with estrogen receptor-positive metastatic breast cancer. Ann Oncol. 2016;27(1):106–13.

    Article  PubMed  Google Scholar 

  61. Bardia A, Dacosta NA, Gabrail NY, Lemon S, Danso MA, Ali HY, et al. Phase (Ph) 1 study of oral seviteronel (VT-464), a dual CYP17-Lyase (L) inhibitor and androgen receptor (AR) antagonist, in patients (pts) with advanced AR+ triple negative (TNBC) or estrogen receptor (ER)+ breast cancer (BC). J Clin Oncol. 2016;34(15_suppl):1088.

    Google Scholar 

  62. Gucalp A, Bardia A, Gabrail N, et al. Phase 1/2 study of oral seviteronel (VT-464), a dual CYP17-lyase inhibitor and androgen receptor (AR) antagonist, in patients with advanced AR positive triple negative (TNBC) or estrogen receptor (ER) positive breast cancer (BC). Presented at: San Antonio Breast Cancer Symposium, 2016: P2-08-04

  63. Finn RS, Martin M, Rugo HS, Jones S, Im S-A, Gelmon K, et al. Palbociclib and Letrozole in advanced breast cancer. N Engl J Med. 2016;375(20):1925–36.

    Article  CAS  PubMed  Google Scholar 

  64. Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im S-A, Masuda N, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016;17(4):425–39.

  65. Cadoo KA, Gucalp A, Traina TA. Palbociclib: an evidence-based review of its potential in the treatment of breast cancer. Breast Cancer (Dove Med Press). 2014;6:123–33.

    CAS  PubMed Central  Google Scholar 

  66. Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009;11(5):R77.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Doane AS, M.M., Zhang, L., Hudis, C., Gerald, W.L. PIK3CA mutation is frequent in class A estrogen receptor negative breast cancer and contributes to the distinct molecular profile. Breast Cancer Res Treat. 2006:S293.

  68. Aleskandarany MA, Rakha EA, Ahmed MA, Powe DG, Ellis IO, Green AR. Clinicopathologic and molecular significance of phospho-Akt expression in early invasive breast cancer. Breast Cancer Res Treat. 2011;127(2):407–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiffany A. Traina.

Ethics declarations

Conflict of Interest

Tiffany A. Traina has received research grants from Astellas Pharma, Innocrin Pharma, Novartis, and Myraid Genetics and has served a consulting role for Astellas Pharma, Puma Biotechnology, Advaxis, Celgene, and Innocrin Pharma.

Tomas G. Lyons has no conflict of interest to declare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Systemic Therapies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyons, T.G., Traina, T.A. Androgen Receptor-Targeted Therapy for Breast Cancer. Curr Breast Cancer Rep 9, 242–250 (2017). https://doi.org/10.1007/s12609-017-0261-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-017-0261-8

Keywords

Navigation