Skip to main content

Advertisement

Log in

Exploiting Homologous Recombination Deficiency in TNBC

  • Translational Research (TA King and EA Mittendorf, Section Editors)
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Since the identification of the BRCA1 and BRCA2 genes over two decades ago, considerable progress has been made in elucidating the role of defective DNA repair in the pathogenesis of triple-negative breast cancer (TNBC). Here, we discuss the significance of recent advances in our understanding of homologous recombination (HR) deficiency, emerging HR deficiency biomarkers, and novel clinical approaches for exploiting HR deficiency in TNBC.

Recent Findings

Recent preclinical and clinical studies have implicated homologous recombination (HR) pathway defects as viable targets in TNBC. New treatment strategies have emerged to exploit defective HR pathways, including platinum salts and poly (ADP-ribose) polymerase (PARP) inhibitors. Early clinical experience with these agents has been promising, though response rates are variable and resistance through a variety of mechanisms can occur. Platforms to identify signatures of HR deficiency have gained increased attention and are being investigated as a tool for guiding treatment selection.

Summary

While a HR-deficient phenotype is increasingly recognized as being present in a significant portion of TNBCs, it is only recently that these advances are beginning to be translated into the clinical setting. Clinical studies are ongoing that will help to define the role of therapies targeting defective DNA repair pathways and biomarkers of HR deficiency in TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California Cancer Registry. Cancer. 2007;109:1721–8.

    Article  PubMed  Google Scholar 

  2. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13:4429–34.

    Article  PubMed  Google Scholar 

  3. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  4. Perou CM. Molecular stratification of triple-negative breast cancers. Oncologist. 2011;16 Suppl 1:61–70.

    Article  PubMed  Google Scholar 

  5. Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF, et al. Comprehensive molecular portraits of human breast tumours. Nat Nat Res. 2012;490:61–70.

    CAS  Google Scholar 

  6. • Pereira B, Chin S-F, Rueda OM, Vollan H-KM, Provenzano E, Bardwell HA, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun Nat Publ Group. 2016;7:11479. One of the largest studies exploring the genomic landscape of breast cancer.

  7. Lips EH, Michaut M, Hoogstraat M, Mulder L, Besselink NJM, Koudijs MJ, et al. Next generation sequencing of triple negative breast cancer to find predictors for chemotherapy response. Breast Cancer Res BioMed Central. 2015;17:134.

    Article  Google Scholar 

  8. Gonzalez-Angulo AM, Timms KM, Liu S, Chen H, Litton JK, Potter J, et al. Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res. 2011;17:1082–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wong-Brown MW, Meldrum CJ, Carpenter JE, Clarke CL, Narod SA, Jakubowska A, et al. Prevalence of BRCA1 and BRCA2 germline mutations in patients with triple-negative breast cancer. Breast Cancer Res Treat. 2015;150:71–80.

    Article  CAS  PubMed  Google Scholar 

  10. Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer Nat Res. 2016;16:110–20.

    Article  CAS  Google Scholar 

  11. Kennedy RD, Quinn JE, Mullan PB, Johnston PG, Harkin DP. The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst. Oxford University Press; 2004. p. 1659–68.

  12. Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AOH, Zander SAL, et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci Natl Acad Sci. 2008;105:17079–84.

    Article  CAS  Google Scholar 

  13. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123–34.

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Heyer W-D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 2008;18:99–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. San Filippo J, Sung P, Klein H. Mechanism of eukaryotic homologous recombination. Annu Rev Biochem. 2008;77:229–57.

    Article  CAS  PubMed  Google Scholar 

  16. Mehta A, Haber JE. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol. 2014;6:a016428. Cold Spring Harbor Laboratory Press.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Miki Y, Swensen J, Shattuck-eidens D, Futreal PA, Harshman K, Tavtigian S, et al. Strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(80-):66–71.

    Article  CAS  PubMed  Google Scholar 

  18. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378:789–92.

    Article  CAS  PubMed  Google Scholar 

  19. Rebbeck TR, Mitra N, Wan F, Sinilnikova OM, Healey S, McGuffog L, et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA Am Med Assoc. 2015;313:1347–61.

  20. Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000;92:564–9.

    Article  CAS  PubMed  Google Scholar 

  21. Domchek SM, Tang J, Stopfer J, Lilli DR, Hamel N, Tischkowitz M, et al. Biallelic deleterious BRCA1 mutations in a woman with early-onset ovarian cancer. Cancer Discov NIH Public Access. 2013;3:399–405.

    Article  CAS  Google Scholar 

  22. Moynahan ME. The cancer connection: BRCA1 and BRCA2 tumor suppression in mice and humans. Oncogene Nat Publ Group. 2002;21:8994–9007.

    CAS  Google Scholar 

  23. Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, De Die-Smulders C, et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science. 2002;297(80-):606–9.

    Article  CAS  PubMed  Google Scholar 

  24. Sung P, Klein H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol Nat Publ Group. 2006;7:739–50.

    Article  CAS  Google Scholar 

  25. Mathew CG. Fanconi anaemia genes and susceptibility to cancer. Oncogene Nat Publ Group. 2006;25:5875–84.

    CAS  Google Scholar 

  26. Xu X, Weaver Z, Linke SP, Li C, Gotay J, Wang XW, et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell. 1999;3:389–95.

    Article  CAS  PubMed  Google Scholar 

  27. Yu VPCC, Koehler M, Steinlein C, Schmid M, Hanakahi LA, Van Gool AJ, et al. Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. Genes Dev Cold Spring Harbor Lab Press. 2000;14:1400–6.

    CAS  Google Scholar 

  28. Farmer H, McCabe N, Lord CJ, Tutt ANJ, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nat Nat Publ Group. 2005;434:917–21.

    CAS  Google Scholar 

  29. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nat Nat Publ Group. 2005;434:913–7.

    CAS  Google Scholar 

  30. • Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, et al. Oral poly (ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376:235–44. This phase II trial demonstrated significant clinical activity of the PARP inhibitor olaparib in heavily pretreated advanced BRCA1/2 mutation-associated breast cancer.

  31. Han HS, Diéras V, Robson ME, Palácová M, Marcom PK, Jager A, et al. Efficacy and tolerability of veliparib (V; ABT-888) in combination with carboplatin (C) and paclitaxel (P) vs placebo (Plc) + C/P in patients (pts) with BRCA1 or BRCA2 mutations and metastatic breast cancer: a randomized, phase 2 study. San Antonio: SABCS; 2016. p. S2–5.

    Google Scholar 

  32. Yang D, Brca B, Entrez N, Ncbi B, Gene E, Surveillance N, et al. Mutations with survival, chemotherapy sensitivity, and gene mutator phenotype. JAMA. 2013;306:1557–65.

    Article  Google Scholar 

  33. Bolton KL, Chenevix-Trench G, Goh C, Sadetzki S, Ramus SJ, Karlan BY, et al. Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA. 2012;307:382–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Decatris MP, Sundar S, O’Byrne KJ. Platinum-based chemotherapy in metastatic breast cancer: current status. Cancer Treat Rev. 2004;30:53–81.

    Article  CAS  PubMed  Google Scholar 

  35. • Byrski T, Huzarski T, Dent R, Gronwald J, Zuziak D, Cybulski C, et al. Response to neoadjuvant therapy with cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat. 2009;115:359–63. This study showed a very high rate of pathologic complete response in BRCA1 mutation carriers with early-stage breast cancer treated with four cycles of neoadjuvant cisplatin.

  36. • Byrski T, Huzarski T, Dent R, Marczyk E, Jasiowka M, Gronwald J, et al. Pathologic complete response to neoadjuvant cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat Springer US. 2014;147:401–5. Suggested efficacy of neoadjuvant platinum-based chemotherapy in BRCA-associated breast cancer.

    Article  CAS  Google Scholar 

  37. Arun B, Bayraktar S, Liu DD, Gutierrez Barrera AM, Atchley D, Pusztai L, et al. Response to neoadjuvant systemic therapy for breast cancer in BRCA mutation carriers and noncarriers: a single-institution experience. J Clin Oncol. 2011;29:3739–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Paluch-Shimon Shani, Eitan Friedman, Raanan Berger, Moshe Zvi Papa, Maya Dadiani, Neil Friedman, Moshe Shabtai, Douglas Zippel, Mordechai Gutman, Talia Golan, Raphael Catane, Ady Yosepovich, Tami Mekel Modiano, BK. Does pathologic complete response predict for outcome in BRCA mutation carriers with triple-negative breast cancer? J Clin Oncol. Chicago; 2014. p. 32:5s.

  39. • Isakoff SJ, Mayer EL, He L, Traina TA, Carey LA, Krag KJ, et al. TBCRC009: a multicenter phase II clinical trial of platinum monotherapy with biomarker assessment in metastatic triple-negative breast cancer. J Clin Oncol. 2015;33:1902–9. Suggested activity of platinum-based chemotherapy in metastatic TNBC, especially in patients with germline BRCA1/2 mutations and in those with HR deficiency.

  40. Tutt A, Ellis P, Kilburn L, Gillett C, Pinder S, Abraham J, et al. TNT: a randomized phase III trial of carboplatin compared with docetaxel for patients with metastatic or recurrent locally advanced triple negative or BRCA1/2 breast cancer. San Antonio: Breast Cancer Symp; 2015. p. 75.

    Google Scholar 

  41. • Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534:47–54. Large study examining 560 whole-genome sequences of breast cancers and defining subgroups associated with defective HR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kurian AW, Hare EE, Mills MA, Kingham KE, McPherson L, Whittemore AS, et al. Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. J Clin Oncol. 2014;32:2001–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Afghahi A, Chang P-J, Ford JM, Telli ML. OT2-05-04. The Talazoparib Beyond BRCA (TBB) Trial: a Phase II clinical trial of talazoparib (BMN 673) in BRCA1 and BRCA2 wild-type patients with (i) advanced triple-negative breast cancer (TNBC) and homologous recombination deficiency (HRD) as assessed by myriad genetics HRD assay, and (ii) advanced HER2-negative breast cancer (BC) with either a germline or somatic mutation in homologous recombination (HR) pathway genes. SABCS. 2015;76:2015.

  44. Telli ML, Timms KM, Reid J, Hennessy B, Mills GB, Jensen KC, et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res. 2016;22:3764–73.

    Article  CAS  PubMed  Google Scholar 

  45. • Telli ML, Jensen KC, Vinayak S, Kurian AW, Lipson JA, Flaherty PJ, et al. Phase II study of gemcitabine, carboplatin, and Iniparib as neoadjuvant therapy for triple-negative and BRCA1/2 mutation-associated breast cancer with assessment of a tumor-based measure of genomic instability: PrECOG 0105. J Clin Oncol. 2015;33:1895–901. Validated the ability of the HRD-LOH score to predict response to neoadjuvant platinum-based chemothapy in TNBC.

  46. Birkbak NJ, Wang ZC, Kim J-Y, Eklund AC, Li Q, Tian R, et al. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov. 2012;2:366–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Popova T, Manié E, Rieunier G, Caux-Moncoutier V, Tirapo C, Dubois T, et al. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res. 2012;72:5454–62.

    Article  CAS  PubMed  Google Scholar 

  48. Telli ML, McMillan A, Ford JM, et al. [P3-07-12] Homologous recombination deficiency (HRD) as a predictive biomarker of response to neoadjuvant platinum-based therapy in patients with triple negative breast cancer (TNBC): A pooled analysis. Cancer Res. 2015;76.

  49. Tutt A, Cheang MCU, Kilburn L, Tovey H, Gillett C, Pinder S, et al. BRCA1 methylation status, silencing and treatment effect in the TNT trial: A randomized phase III trial of carboplatin compared with docetaxel for patients with metastatic or recurrent locally advanced triple negative or BRCA1/2 breast cancer (CRUK/07/012. San Antonio Breast Cancer Symp. San Antonio: San Antonio Breast Cancer Symposium; 2016.

  50. Bouwman P, Aly A, Escandell JM, Pieterse M, Bartkova J, van der Gulden H, et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol Nat Res. 2010;17:688–95.

    Article  CAS  Google Scholar 

  51. Patch A-M, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nat Nat Res. 2015;521:489–94.

    CAS  Google Scholar 

  52. Swisher EM, Sakai W, Karlan BY, Wurz K, Urban N, Taniguchi T. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 2008;68:2581–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C, et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature Nat Publ Group. 2008;451:1116–20.

    CAS  Google Scholar 

  54. Lord CJ, Ashworth A. Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat Med Nat Res. 2013;19:1381–8.

    Article  CAS  Google Scholar 

  55. Du Y, Yamaguchi H, Wei Y, Hsu JL, Wang H-L, Hsu Y-H, et al. Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nat Med Nat Res. 2016;22:194–201.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melinda L. Telli.

Ethics declarations

Conflict of Interest

Alexey Aleshin has no conflict of interest to declare.

Melinda L. Telli has served as an advisor for AstraZeneca, Tesaro, Vertex, Medivation, PharmaMar; has served as board member for Myraid Genetics; and reports her institution clinical research funding from Sanofi Aventis.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Translational Research

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshin, A., Telli, M.L. Exploiting Homologous Recombination Deficiency in TNBC. Curr Breast Cancer Rep 9, 52–59 (2017). https://doi.org/10.1007/s12609-017-0236-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-017-0236-9

Keywords

Navigation