Skip to main content

Advertisement

Log in

Multi-Enzyme Supplementation to Diets Containing 2 Protein Levels Affects Intramuscular Fat Content in Muscle and Modulates Cecal Microflora Without Affecting the Growth Performance of Finishing Pigs

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

We investigated the effects of crude protein (CP) levels and exogenous enzymes on growth performance, meat quality, toxic gas emissions, and colonic microbiota community in 200 finishing pigs. Four groups corresponded to 4 diets: 16.74% CP (high-protein level, HP) and 14.73% CP (medium protein level, MP) diet supplemented with or without 1-g/kg multi-enzymes (ENZs, including 1000-U/kg protease, 2500-U/kg α-amylase, and 10,000-U/kg β-glucanase), using a 2 × 2 factorial arrangement. After 7 weeks of trial, ENZs supplementation increased (P < 0.05) the average daily gain (ADG) of finishing pigs during weeks 4 to 7 and in the overall period and improved gross energy utilization. Dietary HP improved (P < 0.05) ADG during the overall period. The MP diet-treated pigs had higher intramuscular fat (IMF) content in the longissimus dorsi muscle (P < 0.01). ENZs supplementation to the MP diets lowered muscle IMF content (P < 0.01). Additionally, pigs fed the HP diet released (P < 0.05) more NH3 and H2S in excrement. The HP diet enhanced (P < 0.05) intestinal microbial richness, represented by higher observed_ amplicon sequence variants and Chao1. Administration of ENZs to the HP diet increased (P < 0.05) the Shannon and Pielou’s evenness. Dietary MP promoted Firmicutes proliferation. Supplementary HP diet increased the relative abundances of Spirochaetota, Verrucomicrobiota, Desulfobacterota, and Fibrobacterota (P < 0.05). Supplemental ENZ elevated (P < 0.05) Actinobacteriota and Desulfobacterota abundances. ENZ supplementation to the HP diet increased the abundances of Bacteroidota, Desulfobacterota, and Proteobacteria but lowered their abundances in the MP diet. Taken together, the HP diet or ENZs’ supplements improved growth performance. Although the interaction between CP levels and ENZs had no effect on growth performance, it modulated colonic flora and muscle IMF content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials

The raw sequencing files (.fastq) have been deposited in the NCBI Sequence Read Archive (SRA) database (BioProject PRJNA889218).

References

  1. Li Y, Li F, Chen S, Duan Y, Guo Q, Wang W, Wen C, Yin Y (2016) Protein-restricted diet regulates lipid and energy metabolism in skeletal muscle of growing pigs. J Agric Food Chem 64(49):9412–9420. https://doi.org/10.1021/acs.jafc.6b03959

    Article  CAS  PubMed  Google Scholar 

  2. Peng X, Hu L, Liu Y, Yan C, Fang ZF, Lin Y et al (2016) Effects of low-protein diets supplemented with indispensable amino acids on growth performance, intestinal morphology and immunological parameters in 13 to 35 kg pigs. Animal 10(11):1812–1820. https://doi.org/10.1017/S1751731116000999

    Article  CAS  PubMed  Google Scholar 

  3. Qin C, Huang P, Qiu K, Sun W, Xu L, Zhang X, Yin J (2015) Influences of dietary protein sources and crude protein levels on intracellular free amino acid profile in the longissimus dorsi muscle of finishing gilts. J Anim Sci Biotechnol 6(1):1–10. https://doi.org/10.1186/s40104-015-0052-x

    Article  CAS  Google Scholar 

  4. Zhao Y, Tian G, Chen D, Zheng P, Yu J, He J et al (2019) Effect of different dietary protein levels and amino acids supplementation patterns on growth performance, carcass characteristics and nitrogen excretion in growing-finishing pigs. J Anim Sci Biotechnol 10(1):1–10. https://doi.org/10.1186/s40104-019-0381-2

    Article  CAS  Google Scholar 

  5. NRC (2012) Nutrient requirements of swine, 11th rev. Natl Acad Press, Washington, DC

    Google Scholar 

  6. Wang YM, Yu HT, Zhou JY, Zeng XF, Wang G, Cai S et al (2019) Effects of feeding growing-finishing pigs with low crude protein diets on growth performance, carcass characteristics, meat quality and nutrient digestibility in different areas of China. Anim Feed Sci Technol 256:114256. https://doi.org/10.1016/j.anifeedsci.2019.114256

  7. Fan P, Liu P, Song P, Chen X, Ma X (2017) Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci Rep 7(1):1–12. https://doi.org/10.1038/srep43412

    Article  Google Scholar 

  8. Zhao YG, Tian D, Chen P, Zheng J, Yu J, He X et al (2020) Dietary protein levels and amino acid supplementation patterns alter the composition and functions of colonic microbiota in pigs. Anim Nutr 6(2):143–151. https://doi.org/10.1016/j.aninu.2020.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alonso V, del Mar CM, Provincial L, Roncalés P, Beltrán JA (2010) Effect of protein level in commercial diets on pork meat quality. Meat Sci 85(1):7–14. https://doi.org/10.1016/j.meatsci.2009.11.015

    Article  CAS  PubMed  Google Scholar 

  10. Sundu B, Dingle JG (2003) Use of enzymes to improve the nutritional value of palm kernel meal and copra meal. World's Poultry Science Association. http://espace.library.uq.edu.au/view/UQ:98621

  11. Jaworski NW, Lærke HN, Bach Knudsen KE, Stein HH (2015) Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains. J Anim Sci 93(3):1103–1113. https://doi.org/10.2527/jas.2014-8147

    Article  CAS  PubMed  Google Scholar 

  12. Choct M (2015) Feed non-starch polysaccharides for monogastric animals: classification and function. Anim Prod Sci 55(12):1360–1366. https://doi.org/10.1071/an15276

    Article  CAS  Google Scholar 

  13. Torres-Pitarch A, Gardiner GE, Cormican P, Rea M, Crispie F, O’Doherty JV et al (2000) Effect of cereal soaking and carbohydrase supplementation on growth, nutrient digestibility and intestinal microbiota in liquid-fed grow-finishing pigs. Sci Rep 10(1):1–15. https://doi.org/10.1038/s41598-020-57668-6

    Article  CAS  Google Scholar 

  14. Aderibigbe A, Cowieson A, Sorbara JO, Adeola O (2020) Intestinal starch and energy digestibility in broiler chickens fed diets supplemented with α-amylase. Poult Sci 99:5907–5914. https://doi.org/10.1016/j.psj.2020.08.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Olukosi OA, Beeson LA, Englyst K, Romero LF (2015) Effects of exogenous proteases without or with carbohydrases on nutrient digestibility and disappearance of non-starch polysaccharides in broiler chickens. Poult Sci 94(11):2662–2669. https://doi.org/10.3382/ps/pev260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jo JK, Ingale SL, Kim JS, Kim YW, Kim KH, Lee JH et al (2012) Effects of exogenous enzyme supplementation to corn-and soybean meal-based or complex diets on growth performance, nutrient digestibility, and blood metabolites in growing pigs. J Anim Sci 90(9):3041–3048. https://doi.org/10.2527/jas.2010-3430

    Article  CAS  PubMed  Google Scholar 

  17. Mc Alpine PO, O'shea CJ, Varley PF, Solan P, Curran T, O'doherty JV (2012) The effect of protease and nonstarch polysaccharide enzymes on manure odor and ammonia emissions from finisher pigs. J Anim Sci 90(suppl_4):369–371. https://doi.org/10.2527/jas53948

  18. Zhang Q, Ahn, JM, Kim IH (2021) Micelle silymarin supplementation to sows’ diet from day 109 of gestation to entire lactation period enhances reproductive performance and affects serum hormones and metabolites. J Anim Sci 99(12):skab354. https://doi.org/10.1093/jas/skab354

  19. Nørgaard JV, Hansen MJ, Soumeh EA, Adamsen APS, Poulsen HD (2014) Effect of protein level on performance, nitrogen utilisation and carcass composition in finisher pigs. Acta Agr Scand A Anim 64(2):123–129. https://doi.org/10.1080/09064702.2014.943280

    Article  CAS  Google Scholar 

  20. AOAC (2002) Official methods of analysis of AOAC International, 17th edn. Association Official Analytical Chemists, Washington, DC, USA

  21. Zhang Q, Kim IH (2022) Micelle silymarin supplementation to fattening diet augments daily gain, nutrient digestibility, decreases toxic gas emissions, and ameliorates meat quality of fattening pigs. Czech J Anim Sci 67(4):125–136. https://doi.org/10.17221/184/2021-CJAS

  22. Xu X, Liu L, Long SF, Piao XS, Ward TL, Ji F (2017) Effects of chromium methionine supplementation with different sources of zinc on growth performance, carcass traits, meat quality, serum metabolites, endocrine parameters, and the antioxidant status in growing-finishing pigs. Biol Trace Elem Res 179(1):70–78. https://doi.org/10.1007/s12011-017-0935-0

    Article  CAS  PubMed  Google Scholar 

  23. Åkerfeldt MP, Lindberg JE, Göransson L, Andersson K (2019) Effects of reducing dietary content of crude protein and indispensable amino acids on performance and carcass traits of single-phase-and 2-phase-fed growing-finishing pigs. Livest Sci 224:96–101. https://doi.org/10.1016/j.livsci.2019.04.014

    Article  Google Scholar 

  24. Xu X, Chen X, Chen D, Yu B, Yin J, Huang Z (2019) Effects of dietary apple polyphenol supplementation on carcass traits, meat quality, muscle amino acid and fatty acid composition in finishing pigs. Food Funct 10(11):7426–7434. https://doi.org/10.1039/c9fo01304k

    Article  CAS  PubMed  Google Scholar 

  25. AOAC – Association of Official Analytical Chemists (2000) Official methods of analysis, 16th edn. Association of Official Analysis Chemistry, Gaithersburg, MD, USA

    Google Scholar 

  26. Yu M, Zhang C, Yang Y, Mu C, Su Y, Yu K (2017) Long-term effects of early antibiotic intervention on blood parameters, apparent nutrient digestibility, and fecal microbial fermentation profile in pigs with different dietary protein levels. J Anim Sci Biotechnol 8(1):1–12. https://doi.org/10.1186/s40104-017-0192-2

    Article  CAS  Google Scholar 

  27. Ji F, Casper DP, Brown PK, Spangler DA, Haydon KD, Pettigrew JE (2008) Effects of dietary supplementation of an enzyme blend on the ileal and fecal digestibility of nutrients in growing pigs. J Anim Sci 86(7):1533–1543. https://doi.org/10.2527/jas.2007-0262

    Article  CAS  PubMed  Google Scholar 

  28. Li Y, Fang Z, Dai J, Partridge G, Ru Y, Peng J (2010) Corn extrusion and enzyme addition improves digestibility of corn/soy based diets by pigs: in vitro and in vivo studies. Anim Feed Sci Technol 158(3–4):146–154. https://doi.org/10.1016/j.anifeedsci.2010.03.017

    Article  CAS  Google Scholar 

  29. Amerah AM, Romero LF, Awati A, Ravindran V (2017) Effect of exogenous xylanase, amylase, and protease as single or combined activities on nutrient digestibility and growth performance of broilers fed corn/soy diets. Poult Sci 96(4):807–816. https://doi.org/10.3382/ps/pew297

    Article  CAS  PubMed  Google Scholar 

  30. Linton SM (2020) The structure and function of cellulase (endo-β-1, 4-glucanase) and hemicellulase (β-1, 3-glucanase and endo-β-1, 4-mannase) enzymes in invertebrates that consume materials ranging from microbes, algae to leaf litter. Comp Biochem Physiol B Biochem Mol Biol 240:110354. https://doi.org/10.1016/j.cbpb.2019.110354

  31. Feijoo-Siota L, Villa TG (2011) Native and biotechnologically engineered plant proteases with industrial applications. Food Bioprocess Tech 4(6):1066–1088. https://doi.org/10.1007/s11947-010-0431-4

    Article  CAS  Google Scholar 

  32. Hessing GC, van Laarhoven H, Rooke JA, Morgan A (1996) Quality of soyabean meals (SBM) and effect of microbial enzymes in degrading soya antinutritional compounds (ANC). In: 2nd International Soyabean Processing and Utilization Conference, Bangkok, Thailand. pp 8–13

  33. Ruusunen M, Partanen K, Pösö R, Puolanne E (2007) The effect of dietary protein supply on carcass composition, size of organs, muscle properties and meat quality of pigs. Livest Sci 107(2–3):170–181. https://doi.org/10.1016/j.livsci.2006.09.021

    Article  Google Scholar 

  34. Yin J, Li Y, Zhu X, Han H, Ren W, Chen S et al (2017) Effects of long-term protein restriction on meat quality, muscle amino acids, and amino acid transporters in pigs. J Agric Food Chem 65(42):9297–9304. https://doi.org/10.1021/acs.jafc.7b02746

    Article  CAS  PubMed  Google Scholar 

  35. Wang H, Shen J, Pi Y, Gao K, Zhu W (2019) Low-protein diets supplemented with casein hydrolysate favor the microbiota and enhance the mucosal humoral immunity in the colon of pigs. J Anim Sci Biotechnol 10(1):1–13. https://doi.org/10.1186/s40104-019-0387-9

    Article  CAS  Google Scholar 

  36. Sajeev EPM, Amon B, Ammon C, Zollitsch W, Winiwarter W (2018) Evaluating the potential of dietary crude protein manipulation in reducing ammonia emissions from cattle and pig manure: a meta-analysis. Nutr Cycl Agroecosystems 110(1):161–175. https://doi.org/10.1007/s10705-017-9893-3

    Article  CAS  Google Scholar 

  37. Phang IRK, San Chan Y, Wong KS, Lau SY (2018) Isolation and characterization of urease-producing bacteria from tropical peat. Biocatal Agric Biotechnol 13:168–175. https://doi.org/10.1016/j.bcab.2017.12.006

    Article  Google Scholar 

  38. Singh SB, Lin HC (2015) Hydrogen sulfide in physiology and diseases of the digestive tract. Microorganisms 3(4):866–889. https://doi.org/10.3390/microorganisms3040866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hildebrand F, Nguyen TLA, Brinkman B, Yunta RG, Cauwe B, Vandenabeele P (2013) Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol 14(1):1–15. https://doi.org/10.1186/gb-2013-14-1-r4

    Article  Google Scholar 

  40. Yan H, Wei W, Hu L, Zhang Y, Zhang H, Liu J (2021) Reduced feeding frequency improves feed efficiency associated with altered fecal microbiota and bile acid composition in pigs. Front Microbiol 12:761210. https://doi.org/10.3389/fmicb.2021.761210

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhou S, Luo R, Gong G, Wang Y, Gesang Z, Wang K et al (2020) Characterization of metagenome-assembled genomes and carbohydrate-degrading genes in the gut microbiota of Tibetan pig. Front Microbiol 11:595066. https://doi.org/10.3389/fmicb.2020.595066

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhao Z, Shao Z, Ji M, Cheng D, Qu Q, Qiu L (2022) Deeper insights into the effects of microwave hydrothermal pretreatment on methane production and microbial community in anaerobic digestion. Available at SSRN 4145242. https://doi.org/10.2139/ssrn.4145242

  43. Miao S, Zhao C, Zhu J, Hu J, Dong X, Sun L (2018) Dietary soybean meal affects intestinal homoeostasis by altering the microbiota, morphology and inflammatory cytokine gene expression in northern snakehead. Sci Rep 8(1):1–10. https://doi.org/10.1038/s41598-017-18430-7

    Article  CAS  Google Scholar 

  44. Qiu K, Zhang X, Jiao N, Xu D, Huang C, Wang Y, Yin J (2018) Dietary protein level affects nutrient digestibility and ileal microbiota structure in growing pigs. Anim Sci J 89(3):537–546. https://doi.org/10.1111/asj.12946

    Article  CAS  PubMed  Google Scholar 

  45. Murphy CL, Biggerstaff J, Eichhorn A, Ewing E, Shahan R, Soriano D, Stewart S, VanMol K, Walker R, Walters P, Elshahed MS, Youssef NH (2021) Genomic characterization of three novel Desulfobacterota classes expand the metabolic and phylogenetic diversity of the phylum. Environ Microbiol 23(8):4326–4343. https://doi.org/10.1111/1462-2920.15614

    Article  CAS  PubMed  Google Scholar 

  46. Yu M, Li Z, Chen W, Rong T, Wang G, Ma X (2019) Microbiome-metabolomics analysis investigating the impacts of dietary starch types on the composition and metabolism of colonic microbiota in finishing pigs. Front Microbiol 1143. https://doi.org/10.3389/fmicb.2019.01143

  47. Murphy P, Dal Bello F, O’Doherty JV, Arendt EK, Sweeney T, Coffey A (2012) Effects of cereal β-glucans and enzyme inclusion on the porcine gastrointestinal tract microbiota. Anaerobe 18(6):557–565. https://doi.org/10.1016/j.anaerobe.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  48. Rist VTS, Weiss E, Sauer N, Mosenthin R, Eklund M (2014) Effect of dietary protein supply originating from soybean meal or casein on the intestinal microbiota of piglets. Anaerobe 25:72–79. https://doi.org/10.1016/j.anaerobe.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  49. Zhou L, Fang L, Sun Y, Su Y, Hu W (2016) Effects of the dietary protein level on the microbial composition and metabolomic profile in the hindgut of the pig. Anaerobe 38:61–69. https://doi.org/10.1016/j.anaerobe.2015.12.009

    Article  CAS  PubMed  Google Scholar 

  50. Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, Zhao J, Zhang H, Chen W (2021) Blautia—a new functional genus with potential probiotic properties? Gut Microbes 13(1):1875796. https://doi.org/10.1080/19490976.2021.1875796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu X, Li X, Teng T, Jiang Y, Xiang Y, Fan L, Yu Y, Zhou X, Xie P (2022) Comparative analysis of gut microbiota and fecal metabolome features among multiple depressive animal models. J Affect Disord 314:103–111. https://doi.org/10.1016/j.jad.2022.06.088

    Article  PubMed  Google Scholar 

  52. Wei X, Yu L, Zhang C, Ni Y, Zhao J, Zhang H, Chen W, Zhai Q, Tian F (2023) Prebiotic activity of chitooligosaccharides and their ability to alleviate necrotizing enterocolitis in newborn rats. Carbohyd Polym 299:120156. https://doi.org/10.1016/j.carbpol.2022.120156

    Article  CAS  Google Scholar 

  53. Cai C, Zhang Z, Morales M, Wang Y, Khafipour E, Friel J (2019) Feeding practice influences gut microbiome composition in very low birth weight preterm infants and the association with oxidative stress: a prospective cohort study. Free Radic Biol Med 142:146–154. https://doi.org/10.1016/j.freeradbiomed.2019.02.032

    Article  CAS  PubMed  Google Scholar 

  54. Ma N, Tian Y, Wu Y, Ma X (2017) Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Protein Pept Sci 18(8):795–808. https://doi.org/10.2174/1389203718666170216153505

    Article  CAS  Google Scholar 

  55. Kakimoto S, Okazaki K, Sakane T, Imai K, Sumino Y, Akiyama S, Nakao Y (1989) Isolation and taxonomie characterization of acid urease-producing bacteria. Agric Biol Chem 53(4):1111–1117. https://doi.org/10.1080/00021369.1989.1086943

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Capacity Enhancement Project through Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (grant no. 2019R1A6C1010033), and the Department of Animal Resource & Science was supported through the Research-Focused Department Promotion & Interdisciplinary Convergence Research Projects as a part of the University Innovation Support Program for Dankook University in 2022.

Author information

Authors and Affiliations

Authors

Contributions

QZ: Data Curation, Writing—Original Draft; SC: Writing—Review & Editing; JS: Formal analysis; JJ, Investigation; MY, Supervision; MS: Conceptualization; KH: Project administration, Supervision, Writing—Review & Editing; IK: Funding acquisition, Conceptualization, Methodology, Project administration, Writing—Review & Editing.

Corresponding authors

Correspondence to Kyudong Han or In Ho Kim.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 291 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Cho, S., Song, J. et al. Multi-Enzyme Supplementation to Diets Containing 2 Protein Levels Affects Intramuscular Fat Content in Muscle and Modulates Cecal Microflora Without Affecting the Growth Performance of Finishing Pigs. Probiotics & Antimicro. Prot. (2023). https://doi.org/10.1007/s12602-023-10169-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-023-10169-0

Keywords

Navigation