Skip to main content
Log in

Probiotics Influence Gut Microbiota and Tumor Immune Microenvironment to Enhance Anti-Tumor Efficacy of Doxorubicin

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Probiotics have been reported to influence the gut microbiota and immune system in various diseases. Now, the potential impacts of probiotics on tumor treatment still need to be investigated. In this study, three strains of probiotics, Bifidobacterium breve BBr60 (BBr60), Pediococcus pentosaceus PP06 (PP06), and Bifidobacterium longum subsp. longum BL21 (BL21) were investigated for their combination with chemotherapeutic drugs doxorubicin (DOX). Our study showed that PP06 and BL21 have good performance in gastric acid, bile salt, and intestinal fluid tolerance, antimicrobial activity to pathogenic Staphylococcus aureus, and adhesion to Caco-2 cells. Besides, the probiotics all exhibited antioxidant effect, especially BL21. In vitro cytotoxicity and in vivo animal studies revealed that probiotics used alone could not directly induce anti-tumor effects, but the combination of PP06/BL21 and DOX exhibits a higher inhibition rate than DOX alone, via recruitment and infiltration of immune cells in the tumor region. After 16S rRNA analysis of fecal samples from animal models, it was found that BL21 could increase the abundance of Akkermansia, which may also play a role in regulating the tumor microenvironment to improve immune response. In conclusion, BL21 and PP06 in this study could enhance the anti-tumor efficacy by influencing the gut microbiota and tumor immune microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data will be made available on request.

References

  1. Pickard JM, Zeng MY, Caruso R, Nunez G (2017) Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 279(1):70–89. https://doi.org/10.1111/imr.12567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Qi X, Yun C, Sun L et al (2019) Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med 25(8):1225–1233. https://doi.org/10.1038/s41591-019-0509-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sharon G, Cruz NJ, Kang DW et al (2019) Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177(6):1600–1618e1617. https://doi.org/10.1016/j.cell.2019.05.004

  4. Blacher E, Bashiardes S, Shapiro H et al (2019) Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572(7770):474–480. https://doi.org/10.1038/s41586-019-1443-5

    Article  CAS  PubMed  Google Scholar 

  5. Pan H, Guo R, Ju Y et al (2019) A single bacterium restores the microbiome dysbiosis to protect bones from destruction in a rat model of rheumatoid arthritis. Microbiome 7(1):107. https://doi.org/10.1186/s40168-019-0719-1

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kaur I, Suri V, Sachdeva N et al (2022) Efficacy of multi-strain probiotic along with dietary and lifestyle modifications on polycystic ovary syndrome: a randomised, double-blind placebo-controlled study. Eur J Nutr 61(8):4145–4154. https://doi.org/10.1007/s00394-022-02959-z

    Article  CAS  PubMed  Google Scholar 

  7. Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47(2):241–259. https://doi.org/10.1194/jlr.R500013-JLR200

    Article  CAS  PubMed  Google Scholar 

  8. Ma C, Han M, Heinrich B et al (2018) Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360(6391). https://doi.org/10.1126/science.aan5931

  9. Miura K, Kodama Y, Inokuchi S et al (2010) Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterol 139(1):323–334e327. https://doi.org/10.1053/j.gastro.2010.03.052

  10. Yu LX, Yan HX, Liu Q et al (2010) Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology 52(4):1322–1333. https://doi.org/10.1002/hep.23845

    Article  CAS  PubMed  Google Scholar 

  11. Zhu L, Baker SS, Gill C et al (2013) Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57(2):601–609. https://doi.org/10.1002/hep.26093

    Article  CAS  PubMed  Google Scholar 

  12. Hill C, Guarner F, Reid G et al (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514. https://doi.org/10.1038/nrgastro.2014.66

  13. Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA (2019) Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 16(10):605–616. https://doi.org/10.1038/s41575-019-0173-3

    Article  PubMed  Google Scholar 

  14. Kechagia M, Basoulis D, Konstantopoulou S et al (2013) Health benefits of probiotics: a review. ISRN Nutr 2013:481651. https://doi.org/10.5402/2013/481651

  15. Kaur IP, Chopra K, Saini A (2002) Probiotics: potential pharmaceutical applications. Eur J Pharm Sci 15(1):1–9. https://doi.org/10.1016/s0928-0987(01)00209-3

    Article  CAS  PubMed  Google Scholar 

  16. Iida N, Dzutsev A, Stewart CA et al (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. 342(6161):967–970. https://doi.org/10.1126/science.1240527

  17. Sivan A, Corrales L, Hubert N et al (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350(6264):1084–1089. https://doi.org/10.1126/science.aac4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ren Z, Chen S, Lv H et al (2022) Effect of Bifidobacterium animalis subsp. lactis SF on enhancing the tumor suppression of irinotecan by regulating the intestinal flora. Pharmacol Res 184:106406. https://doi.org/10.1016/j.phrs.2022.106406

  19. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12(12):860–875. https://doi.org/10.1038/nrc3380

    Article  CAS  PubMed  Google Scholar 

  20. Mezzapelle R, Bianchi ME, Crippa MP (2021) Immunogenic cell death and immunogenic surrender: related but distinct mechanisms of immune surveillance. Cell Death Dis 12(10):869. https://doi.org/10.1038/s41419-021-04178-6

    Article  PubMed  PubMed Central  Google Scholar 

  21. Collado MC, Meriluoto J, Salminen S (2007) Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol 226(5):1065–1073. https://doi.org/10.1007/s00217-007-0632-x

    Article  CAS  Google Scholar 

  22. Lee N-K, Han KJ, Son S-H, Eom SJ, Lee S-K, Paik H-D (2015) Multifunctional effect of probiotic Lactococcus lactis KC24 isolated from kimchi. LWT Food Sci Technol 64(2):1036–1041. https://doi.org/10.1016/j.lwt.2015.07.019

    Article  CAS  Google Scholar 

  23. Moura SL, Pallares-Rusinol A, Sappia L, Marti M, Pividori MI (2022) The activity of alkaline phosphatase in breast cancer exosomes simplifies the biosensing design. Biosens Bioelectron 198:113826. https://doi.org/10.1016/j.bios.2021.113826

  24. Ouyang W, O’Garra A (2019) IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation. Immunity 50(4):871–891. https://doi.org/10.1016/j.immuni.2019.03.020

    Article  CAS  PubMed  Google Scholar 

  25. Italiani P, Boraschi D (2014) From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol 5:514. https://doi.org/10.3389/fimmu.2014.00514

  26. Lee KA, Luong MK, Shaw H, Nathan P, Bataille V, Spector TD (2021) The gut microbiome: what the oncologist ought to know. Brit J Cancer 125(9):1197–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sivamaruthi BS, Kesika P, Chaiyasut C (2020) The role of probiotics in colorectal cancer management. Evid Based Complement Alternat Med 2020:3535982. https://doi.org/10.1155/2020/3535982

    Article  PubMed  PubMed Central  Google Scholar 

  28. Abdolalipour E, Mahooti M, Salehzadeh A et al (2020) Evaluation of the antitumor immune responses of probiotic Bifidobacterium bifidum in human papillomavirus-induced tumor model. Microb Pathog 145:104207. https://doi.org/10.1016/j.micpath.2020.104207

  29. Li Q, Li Y, Wang Y et al (2021) Oral administration of Bifidobacterium breve promotes antitumor efficacy via dendritic cells-derived interleukin 12. Oncoimmunology 10(1):1868122. https://doi.org/10.1080/2162402X.2020.1868122

    Article  PubMed  PubMed Central  Google Scholar 

  30. Touchefeu Y, Montassier E, Nieman K et al (2014) Systematic review: the role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis - current evidence and potential clinical applications. Aliment Pharmacol Ther 40(5):409–421. https://doi.org/10.1111/apt.12878

    Article  CAS  PubMed  Google Scholar 

  31. Begley M, Gahan CG, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29(4):625–651. https://doi.org/10.1016/j.femsre.2004.09.003

    Article  CAS  PubMed  Google Scholar 

  32. García-Cayuela T, Korany AM, Bustos I et al (2014) Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Res Int 57:44–50. https://doi.org/10.1016/j.foodres.2014.01.010

    Article  CAS  Google Scholar 

  33. Okochi M, Sugita T, Asai Y, Tanaka M, Honda H (2017) Screening of peptides associated with adhesion and aggregation of Lactobacillus rhamnosus GG in vitro. Biochem Eng J 128:178–185. https://doi.org/10.1016/j.bej.2017.10.004

    Article  CAS  Google Scholar 

  34. de Souza BMS, Borgonovi TF, Casarotti SN, Todorov SD, Penna ALB (2019) Lactobacillus casei and Lactobacillus fermentum strains isolated from mozzarella cheese: probiotic potential, safety, acidifying kinetic parameters and viability under gastrointestinal tract conditions. Probiotics Antimicrob Proteins 11(2):382–396. https://doi.org/10.1007/s12602-018-9406-y

    Article  CAS  PubMed  Google Scholar 

  35. Krausova G, Hyrslova I, Hynstova I (2019) In vitro evaluation of adhesion capacity, hydrophobicity, and auto-aggregation of newly isolated potential probiotic strains. Fermentation 5(4). https://doi.org/10.3390/fermentation5040100

  36. Boris S, Suarez JE, Barbes C (1997) Characterization of the aggregation promoting factor from Lactobacillus gasseri, a vaginal isolate. J Appl Microbiol 83(4):413–420. https://doi.org/10.1046/j.1365-2672.1997.00250.x

    Article  CAS  PubMed  Google Scholar 

  37. Del Re B, Sgorbati B, Miglioli M, Palenzona D (2000) Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31(6):438–442. https://doi.org/10.1046/j.1365-2672.2000.00845.x

    Article  PubMed  Google Scholar 

  38. Azam R, Ghafouri-Fard S, Tabrizi M et al (2014) Lactobacillus acidophilus and Lactobacillus crispatus culture supernatants downregulate expression of cancer-testis genes in the MDA-MB-231 cell line. Asian Pac J Cancer P 15(10):4255–4259.

  39. Karami P, Abediankenari S, Goli HR, Gholami M, Ahanjan M (2019) Evaluation of cell growth inhibition of bifidobacterium bifidum cell-free supernatant extract on 4T1tumor cell lineage. Res Mol Med 7(4):1–6. https://doi.org/10.32598/rmm.7.4.1

  40. Chaib M, Hafeez BB, Mandil H et al (2022) Reprogramming of pancreatic adenocarcinoma immunosurveillance by a microbial probiotic siderophore. Commun Biol 5(1):1181. https://doi.org/10.1038/s42003-022-04102-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shi Y, Zheng W, Yang K et al (2020) Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. J Exp Med 217(5). https://doi.org/10.1084/jem.20192282

  42. Ngambenjawong C, Gustafson HH, Pun SH (2017) Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev 114:206–221. https://doi.org/10.1016/j.addr.2017.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cullis J, Siolas D, Avanzi A, Barui S, Maitra A, Bar-Sagi D (2017) Macropinocytosis of nab-paclitaxel drives macrophage activation in pancreatic cancer. Cancer Immunol Res 5(3):182–190. https://doi.org/10.1158/2326-6066.CIR-16-0125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Colegio OR, Chu NQ, Szabo AL et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513(7519):559–563. https://doi.org/10.1038/nature13490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin W-W, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Investig 117(5):1175–1183. https://doi.org/10.1172/JCI31537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim S, Shin YC, Kim TY et al (2021) Mucin degrader Akkermansia muciniphila accelerates intestinal stem cell-mediated epithelial development. Gut Microbes 13(1):1–20. https://doi.org/10.1080/19490976.2021.1892441

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the public platform of the Laboratory of Industrial Catalysis & Metabolic Engineering (Nanjing Normal University) for technical support. This research was financially supported by the National Natural Science Foundation of China (82203031), the Natural Science Foundation of Jiangsu Province of China (BK20220375), and the Jiangsu provincial colleges of Natural Science General Program (22KJB350007).

Author information

Authors and Affiliations

Authors

Contributions

Zixuan Ye: conceptualization, methodology, investigation, formal analysis, data curation, visualization, writing-original draft, writing-review and editing. Lizhen Liang: methodology, investigation, data curation, visualization, writing-review and editing. Yuqiao Xu: conceptualization, methodology, data curation, writing-review and editing, visualization. Jingpeng Yang: methodology, formal analysis, data curation. Yanan Li: conceptualization, formal analysis, data curation, funding acquisition, writing—review and editing, visualization, supervision.

Corresponding author

Correspondence to Yanan Li.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 893 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Z., Liang, L., Xu, Y. et al. Probiotics Influence Gut Microbiota and Tumor Immune Microenvironment to Enhance Anti-Tumor Efficacy of Doxorubicin. Probiotics & Antimicro. Prot. 16, 606–622 (2024). https://doi.org/10.1007/s12602-023-10073-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-023-10073-7

Keywords

Navigation