Skip to main content
Log in

Antibacterial Properties and Efficacy of LL-37 Fragment GF-17D3 and Scolopendin A2 Peptides Against Resistant Clinical Strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii In Vitro and In Vivo Model Studies

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii have emerged as major clinical threats owing to the increasing prevalence of ventilator-associated pneumonia caused by multidrug-resistant or extensively drug-resistant strains. The present study aimed to assess the antibacterial effects and efficacy of LL-37 fragment GF-17D3 and synthetic Scolopendin A2 peptides against resistant clinical strains in vitro and in vivo models. P. aeruginosaS. aureus, and A. baumannii were isolated from clinical infections. Their antibiotic resistance and minimum inhibitory concentration were assessed. LL-37 fragment GF-17D3 peptide was selected from available databases. Scolopendin A2 peptide’s 6th amino acid (proline) was substituted with lysine and peptides and MICs were determined. The biofilm inhibitory activity was quantified at sub MIC concentrations. Synergetic effects of Scolopendin A2 and imipenem were assessed by checkerboard. After mice nasal infection with P. aeruginosa, peptides LD50 was determined. Isolates harbored complete resistance toward the majority of antibiotics and MIC values ranged between 1 and > 512 µg/ml. The majority of isolates exhibited strong biofilm activity. Synthetic peptides showed lower MIC values than antibiotic agents and the lowest MIC values were obtained for synthetic peptides in combination with antibiotics. The Synergisms effect of Scolopendin A2 with imipenem was also determined. Scolopendin A2 was found to have antibacterial efficacy against P. aeruginosa, S. aureus, and A. baumannii with MIC 64 µg/ml, 8 µg/ml, and 16 µg/ml, respectively, and LL37 showed antibacterial efficacy against P. aeruginosa, S. aureus, and A. baumannii with MIC 128 µg/ml, 32 µg/ml, and 32 µg/ml, respectively. Both AMPs decreased biofilms by ≥ 96% at 1 × MIC. The biofilm inhibitory activity was measured at sub MIC concentrations of the peptides and the results demonstrated that Scolopendin A2 exhibited anti-biofilm activity at 1/4 × MIC and 1/2 × MIC concentrations was 47.9 to 63.8%, although LL37 among 1/4 × MIC and 1/2 × MIC concentrations was 21.3 to 49.6% against three pathogens. The combination of Scolopendin A2 and antibiotics demonstrated synergistic activity-resistant strains with FIC values ≤ 0.5 for three pathogens, while LL37 and antibiotics showed synergistic activity FIC values ≤ 0.5 for only P. aeruginosa. Infection model Scolopendin A2 with Imipenem (2 × MIC) was efficacious in vivo, with a 100% survival rate following treatment at 2 × MIC after 120 h. The mRNA expression of biofilm-related genes was decreased for both peptides. Synthesis Scolopendin A2 decreased the expression of biofilm formation genes compared to the control group. Synthetic Scolopendin A2 exhibits antimicrobial activity without causing toxicity on the human epithelial cell line. Based on our findings, it seems that synthetic Scolopendin A2 is an appropriate antimicrobial source. That could be a promising option in combination with antibiotics for a topical medication and in the prevention of acute and chronic infections caused by multidrug-resistant bacteria. Nevertheless, additional experiments are required to assess another potential of this novel AMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 
Fig. 5
Fig. 6
Fig. 7 
Fig. 8

Similar content being viewed by others

Data Availability

Availability of data and materials the datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Alemayehu T (2021) Prevalence of multidrug-resistant bacteria in Ethiopia: a systematic review and meta-analysis. J Glob Antimicrob Resist 26:133–139. https://doi.org/10.1016/j.jgar.2021.05.017

    Article  CAS  PubMed  Google Scholar 

  2. Hosamirudsari H, Forghani S, Samaneh A (2018) Multi-drug resistant ventilator associated pneumonia: risk factors and outcomes. Can J Infect Control 33(1):20–24

  3. De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ (2020) Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 33:e00181–e219. https://doi.org/10.1111/imb.12124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ayobami O, Brinkwirth S, Eckmanns T, Markwart R (2022) Antibiotic resistance in hospital-acquired ESKAPE infections in low-and lower-middle-income countries: a systematic review and meta-analysis. Emerg Microbes Infect 11(1):443–451. https://doi.org/10.1080/22221751.2022.2030196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vaez H, Salehi-Abargouei A, Ghalehnoo ZR, Khademi F (2018) Multidrug resistant Pseudomonas aeruginosa in Iran: a systematic review and metaanalysis. J Glob Infect Dis 10(4):212. https://doi.org/10.4103/jgid.jgid_113_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Llaca-Díaz JM, Mendoza-Olazarán S, Camacho-Ortiz A, Flores S, Garza-González E (2012) One-year surveillance of ESKAPE pathogens in an intensive care unit of Monterrey. Mexico Chemotherapy 58(6):475–481. https://doi.org/10.1159/000346352

    Article  CAS  PubMed  Google Scholar 

  7. Slavcovici., Maier C, & Radulescu A, (2015) Antimicrobial resistance of ESKAPE-pathogens in culture-positive pneumonia. Farmacia 63(2):201–205

    Google Scholar 

  8. Arbune M, Gurau G, Niculet E, Iancu AV, Lupasteanu G, Fotea S, Vasile MC, Tatu AL (2021) Prevalence of antibiotic resistance of ESKAPE pathogens over five years in an infectious diseases hospital from South-East of Romania. Infect Drug Resist 14:2369–2378. https://doi.org/10.2147/idr.S312231

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pourhajibagher M, Hashemi FB, Pourakbari B, Aziemzadeh M, Bahador A (2016) Antimicrobial resistance of Acinetobacter baumannii to imipenem in Iran: a systematic review and meta-analysis. Open Microbiol J 10:32. https://doi.org/10.2174/1874285801610010032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Armin S, Karimi A, Fallah F, Tabatabaii SR, Alfatemi SM, Khiabanirad P, Shiva F, Fahimzad A, Rahbar M, Mansoorghanaii R, Shirvani F (2015) Antimicrobial resistance patterns of Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus isolated from patients with nosocomial infections admitted to tehran hospitals. Arch Pediatr Infect Dis 3(4):e32554. https://doi.org/10.5812/pedinfect.32554

  11. Dargahi Z, Hamad AA, Sheikh AF, Ahmad Khosravi N, Samei Fard S, Motahar M, Mehr FJ, Abbasi F, Meghdadi H, Bakhtiyariniya P, Heydari R (2022) The biofilm formation and antibiotic resistance of bacterial profile from endotracheal tube of patients admitted to intensive care unit in southwest of Iran. PLoS One 17(11):e0277329. https://doi.org/10.1371/journal.pone.0277329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vouga M, Greub G (2016) Emerging bacterial pathogens: the past and beyond. Cell Biol Int 22(1):12–21. https://doi.org/10.1042/CBI20090025

    Article  CAS  Google Scholar 

  13. Abushaheen MA, Fatani AJ, Alosaimi M, Mansy W, George M, Acharya S, Rathod S, Divakar DD, Jhugroo C, Vellappally S, Khan AA (2020) Antimicrobial resistance, mechanisms and its clinical significance. Dis Mon 66(6):100971. https://doi.org/10.1016/j.disamonth.2020.100971

    Article  PubMed  Google Scholar 

  14. Rima M, Rima M, Fajloun Z, Sabatier JM, Bechinger B, Naas T (2021) Antimicrobial peptides: A potent alternative to antibiotics. Antibiotics (Basel) 10(9). https://doi.org/10.3390/antibiotics10091095

  15. Bechinger B, Gorr SU (2017) Antimicrobial peptides: mechanisms of action and resistance. J Dent Res 96(3):254–260. https://doi.org/10.1177/0022034516679973

    Article  CAS  PubMed  Google Scholar 

  16. Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, Lucchetti D, Vassallo A, Vogel H, Sgambato A, Falabella P (2021) Microbiology I. Antimicrobial peptides: a new hope in biomedical and pharmaceutical fields. Front Cell Infect Microbiol 11:453. https://doi.org/10.3389/fcimb.2021.668632

    Article  CAS  Google Scholar 

  17. Matthyssen T, Li W, Holden JA, Lenzo JC, Hadjigol S, O'Brien-Simpson NM (2022) The potential of modified and multimeric antimicrobial peptide materials as superbug killers. Front Chem 9:795433. https://doi.org/10.3389/fchem.2021.795433

  18. Sinha R, Shukla P (2019) Antimicrobial peptides: recent insights on biotechnological interventions and future perspectives. Protein Pept Lett 26(2):79–87. https://doi.org/10.2174/0929866525666181026160852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huan Y, Kong Q, Mou H, Yi H (2020) Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol 2559. https://doi.org/10.3389/fmicb.2020.582779

  20. Ridyard KE, Overhage J (2021) The potential of human peptide LL-37 as an antimicrobial and anti-biofilm agent. Antibiotics (Basel) 10(6):650. https://doi.org/10.3390/antibiotics10060650

    Article  CAS  PubMed  Google Scholar 

  21. Ramazi S, Mohammadi N, Allahverdi A, Khalili E, Abdolmaleki P (2022) A review on antimicrobial peptides databases and the computational tools. Database (Oxford) baac011. https://doi.org/10.1093/database/baac011

  22. Fabisiak A, Murawska N, Fichna J (2016) LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity. Pharmacol Rep 68(4):802–808. https://doi.org/10.1016/j.pharep.2016.03.015

    Article  CAS  PubMed  Google Scholar 

  23. Dürr UH, Sudheendra U, Ramamoorthy A (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758(9):1408–1425. https://doi.org/10.1016/j.bbamem.2006.03.030

    Article  CAS  PubMed  Google Scholar 

  24. Kiattiburut W, Zhi R, Lee SG, Foo AC, Hickling DR, Keillor JW, Goto NK, Li W, Conlan W, Angel JB, Wang G, Tanphaichitr N (2018) Antimicrobial peptide LL-37 and its truncated forms, GI-20 and GF-17, exert spermicidal effects and microbicidal activity against Neisseria gonorrhoeae. Hum Reprod 33(12):2175–2183. https://doi.org/10.1093/humrep/dey315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee H, Hwang JS, Lee J, Kim JI (1848) Lee DG (2015) Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism. Biochim Biophys Acta 2:634–642. https://doi.org/10.1016/j.bbamem.2014.11.016

    Article  CAS  Google Scholar 

  26. Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44(D1):D1087–D1093. https://doi.org/10.1093/nar/gkv1278

    Article  CAS  PubMed  Google Scholar 

  27. Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S (2010) CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res 38((Database issue)):D774–D780. https://doi.org/10.1093/nar/gkp1021

    Article  CAS  PubMed  Google Scholar 

  28. Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C (2021) Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res 49(W1):W216–W227. https://doi.org/10.1093/nar/gkab225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gupta S, Kapoor P, Chaudhary K, Gautam A (2013) Kumar R (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS One 8(9):e73957. https://doi.org/10.1371/journal.pone.0073957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhadra P, Yan J, Li J, Fong S, Siu S (2018) AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Sci Rep 8(1):1–10. https://doi.org/10.1038/s41598-018-19752-w

    Article  CAS  Google Scholar 

  31. Gautier R, Douguet D, Antonny B, Drin G (2008) HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics 24(18):2101–2102. https://doi.org/10.1093/bioinformatics/btn392

    Article  CAS  PubMed  Google Scholar 

  32. Sharma A, Gupta P, Kumar R, Bhardwaj A (2016) dPABBs: a novel in silico approach for predicting and designing anti-biofilm peptides. Sci Rep 6(1):1–13. https://doi.org/10.1038/srep21839

    Article  CAS  Google Scholar 

  33. Wang X, Mishra B, Lushnikova T, Narayana JL, Wang G (2018) Amino acid composition determines peptide activity spectrum and hot-spot-based design of merecidin. Adv Biosyst 2(5):1700259. https://doi.org/10.1002/adbi.201700259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Epand RF, Wang G, Berno B, Epand RM (2009) Lipid segregation explains selective toxicity of a series of fragments derived from the human cathelicidin LL-37. Antimicrob Agents Chemother 53(9):3705–3714. https://doi.org/10.1128/AAC.00321-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parte A, Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Ludwig W, Suzuki KI (2012) Bergey’s manual of systematic bacteriology: volume 5: the Actinobacteria, Springer Science & Business Media

  36. Liapikou A, Torres A (2016) Emerging drugs for nosocomial pneumonia. Expert Opin Emerg Drugs 21(3):331–341. https://doi.org/10.1080/14728214.2016.1206077

    Article  CAS  PubMed  Google Scholar 

  37. Nowroozi J, Akhavan Sepahi A, Rashnonejad A (2012) Pyocyanine biosynthetic genes in clinical and environmental isolates of Pseudomonas aeruginosa and detection of pyocyanine’s antimicrobial effects with or without colloidal silver nanoparticles. Cell J 14(1):7–18

  38. Vanbroekhoven K, Ryngaert A, Wattiau P, Mot R, Springael D (2004) Acinetobacter diversity in environmental samples assessed by 16S rRNA gene PCR–DGGE fingerprinting. FEMS Microbiol Ecol 50(1):37–50. https://doi.org/10.1016/j.femsec.2004.05.007

    Article  CAS  PubMed  Google Scholar 

  39. Wayne P (2010) Clinical and laboratory standards institute: performance standards for antimicrobial susceptibility testing: informational supplement, M100: Clinical and Laboratory Standards Institute (CLSI). CLSI document M100-S20

  40. Emami A, Pirbonyeh N, Keshavarzi A, Javanmardi F, Moradi Ghermezi S, Ghadimi T (2020) Three year study of infection profile and antimicrobial resistance pattern from burn patients in southwest Iran. Infect Drug Resist 13:1499. https://doi.org/10.2147/IDR.S249160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gheorghe I, Czobor I, Chifiriuc MC, Borcan E, Ghiţă C, Banu O, Lazăr V, Mihăescu G, Mihăilescu DF, Zhiyong Z (2014) Molecular screening of carbapenemase-producing Gram-negative strains in Romanian intensive care units during a one year survey. J Med Microbiol 63(10):1303–1310. https://doi.org/10.1099/jmm.0.074039-0

    Article  CAS  PubMed  Google Scholar 

  42. Maynou G, Migura-Garcia L, Chester-Jones H, Ziegler D, Bach A, Terré M (2017) Effects of feeding pasteurized waste milk to dairy calves on phenotypes and genotypes of antimicrobial resistance in fecal Escherichia coli isolates before and after weaning. J Dairy Sci 100(10):7967–7979. https://doi.org/10.3168/jds.2017-13040

    Article  CAS  PubMed  Google Scholar 

  43. Gan C, Hu J, Cao Q, Zhao R, Li Y, Wang Z, Tao Y, Mo X (2020) Rapid identification of pathogens involved in pediatric osteoarticular infections by multiplex PCR. Ann Transl Med 8(5). https://doi.org/10.21037/atm.2020.01.34.

  44. Mishra B, Wang G (2017) Titanium surfaces immobilized with the major antimicrobial fragment FK-16 of human cathelicidin LL-37 are potent against multiple antibiotic-resistant bacteria. Biofouling 33(7):544–555. https://doi.org/10.1080/08927014.2017.1332186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Deslouches B, Steckbeck JD, Craigo JK, Doi Y, Burns JL, Montelaro RC (2015) Engineered cationic antimicrobial peptides to overcome multidrug resistance by ESKAPE pathogens. Antimicrob Agents Chemother 59(2):1329–1333. https://doi.org/10.1128/AAC.03937-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Founou RC, Founou LL, Essack SY (2018) Extended spectrum beta-lactamase mediated resistance in carriage and clinical gram-negative ESKAPE bacteria: a comparative study between a district and tertiary hospital in South Africa. Antimicrob Resist Infect 7(1):1–11. https://doi.org/10.1186/s13756-018-0423-0

    Article  Google Scholar 

  47. Abdelraheem WM, Abdelkader AE, Mohamed ES, Mohammed MS (2020) Detection of biofilm formation and assessment of biofilm genes expression in different Pseudomonas aeruginosa clinical isolates. Meta Gene 23:100646. https://doi.org/10.1016/j.mgene.2020.100646

    Article  Google Scholar 

  48. Kot B, Sytykiewicz H, Sprawka I (2018) Expression of the biofilm-associated genes in methicillin-resistant Staphylococcus aureus in biofilm and planktonic conditions. Int J Mol Sci 19(11):3487. https://doi.org/10.3390/ijms19113487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abdelaziz NA, Elkhatib WF, Sherif MM, Abourehab MAS, Al-Rashood ST, Eldehna WM, Mostafa NM, Elleboudy NS (2022) In silico docking, resistance modulation and biofilm gene expression in multidrug-resistant Acinetobacter baumannii via cinnamic and gallic acids. Antibiotics (Basel) 11(7):870. https://doi.org/10.3390/antibiotics11070870

    Article  CAS  PubMed  Google Scholar 

  50. Berditsch M, Jäger T, Strempel N, Schwartz T, Overhage J, Ulrich AS (2015) Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa. Antimicrob Agents Chemother 59(9):5288–5296. https://doi.org/10.1128/AAC.00682-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shang D, Liu Y, Jiang F, Ji F, Wang H, Han X (2019) Synergistic antibacterial activity of designed Trp-containing antibacterial peptides in combination with antibiotics against multidrug-resistant Staphylococcus epidermidis. Front Microbiol 10:2719. https://doi.org/10.3389/fmicb.2019.02719

    Article  PubMed  PubMed Central  Google Scholar 

  52. Vaucher RA, da Motta AS, Brandelli A (2010) Evaluation of the in vitro cytotoxicity of the antimicrobial peptide P34. Cell Biol Int 34(3):317–323. https://doi.org/10.1042/CBI20090025

    Article  CAS  PubMed  Google Scholar 

  53. Randhawa MA (2009) Calculation of LD50 values from the method of Miller and Tainter, 1944. J Ayub Med Coll Abbottabad 21(3):184–185. PMID: 20929045

    PubMed  Google Scholar 

  54. Jiang S, Deslouches B, Chen C, Di ME, Di YP YP (2019) Antibacterial properties and efficacy of a novel SPLUNC1-derived antimicrobial peptide, α4-short, in a murine model of respiratory infection. mBio 10(2):e00226–19. https://doi.org/10.1128/mBio.00226-19

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lawrenz MB, Biller AE, Cramer DE, Kraenzle JL, Sotsky JB, Vanover CD, Yoder-Himes DR, Pollard A, Warawa JM (2015) Development and evaluation of murine lung-specific disease models for Pseudomonas aeruginosa applicable to therapeutic testing. Pathogens and disease. Pathog Dis 73(5). https://doi.org/10.1093/femspd/ftv025

  56. Peng K, Kong Y, Zhai L, Wu X, Jia P, Liu J, Yu H (2010) Two novel antimicrobial peptides from centipede venoms. Toxicon 55(2–3):274–279. https://doi.org/10.1016/j.toxicon.2009.07.040

    Article  CAS  PubMed  Google Scholar 

  57. Lee H, Hwang JS, Lee DG (2016) Scolopendin 2 leads to cellular stress response in Candida albicans. Apoptosis 21(7):856–865. https://doi.org/10.1007/s10495-016-1254-1

    Article  CAS  PubMed  Google Scholar 

  58. Chaparro-Aguirre E, Segura-Ramírez PJ, Alves FL, Riske KA, Miranda A, Silva Júnior PI (2019) Antimicrobial activity and mechanism of action of a novel peptide present in the ecdysis process of centipede Scolopendra subspinipes subspinipes. Sci Rep 9(1):1–11. https://doi.org/10.1038/s41598-019-50061-y

    Article  CAS  Google Scholar 

  59. Lee JH, Kim IW, Kim SH, Kim MA, Yun EY, Nam SH, Ahn MY, Kang D, Hwang JS (2015) Anticancer activity of the antimicrobial peptide scolopendrasin VII derived from the centipede. Scolopendra subspinipes mutilans J Microbiol Biotechnol 25(8):1275–1280. https://doi.org/10.4014/jmb.1503.03091

    Article  CAS  PubMed  Google Scholar 

  60. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395. https://doi.org/10.1038/415389a

    Article  CAS  PubMed  Google Scholar 

  61. Kwon YN, Lee JH, Kim IW, Kim SH, Yun EY, Nam SH, Ahn MY, Jeong M, Kang DC, Lee IH, Hwang JS (2013) Antimicrobial activity of the synthetic peptide scolopendrasin ii from the centipede Scolopendra subspinipes mutilans. J Microbiol Biotechnol 23(10):1381–1385. https://doi.org/10.4014/jmb.1306.06013

    Article  CAS  PubMed  Google Scholar 

  62. Cardoso MH, Meneguetti BT, Costa BO, Buccini DF, Oshiro KGN, Preza SLE, Carvalho CME, Migliolo L, Franco OL (2019) Non-lytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets. Int J Mol Sci 20(19):4877. https://doi.org/10.3390/ijms20194877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Choi H, Hwang JS, Lee DG (2014) Identification of a novel antimicrobial peptide, scolopendin 1, derived from centipede S colopendra subspinipes mutilans and its antifungal mechanism. Insect Mol Biol 23(6):788–799

    Article  CAS  PubMed  Google Scholar 

  64. Greco I, Molchanova N, Holmedal E, Jenssen H, Hummel BD, Watts JL, Håkansson J, Hansen PR, Svenson J (2020) Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci Rep 10(1):13206. https://doi.org/10.1038/s41598-020-69995-9

  65. Wnorowska U, Fiedoruk K, Piktel E, Prasad SV, Sulik M, Janion M, Daniluk T, Savage PB, Bucki R (2020) Nanoantibiotics containing membrane-active human cathelicidin LL-37 or synthetic ceragenins attached to the surface of magnetic nanoparticles as novel and innovative therapeutic tools: Current status and potential future applications. J Nanobiotechnology 18(1):1–18. https://doi.org/10.1186/s12951-019-0566-z

    Article  Google Scholar 

  66. Marmont LS, Whitfield GB, Rich JD, Yip P, Giesbrecht LB, Stremick CA, Whitney JC, Parsek MR, Harrison JJ, Howell PL (2017) PelA and PelB proteins form a modification and secretion complex essential for Pel polysaccharide-dependent biofilm formation in Pseudomonas aeruginosa. J Biol Chem 292(47):19411–19422. https://doi.org/10.1074/jbc.M117.812842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chemani C, Imberty A, de Bentzmann S, Pierre M, Wimmerová M, Guery BP, Faure K (2009) Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect Immun 77(5):2065–2075. https://doi.org/10.1128/IAI.01204-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Omidi M, Firoozeh F, Saffari M, Sedaghat H, Zibaei M, Khaledi A (2020) Ability of biofilm production and molecular analysis of spa and ica genes among clinical isolates of methicillin-resistant Staphylococcus aureus. BMC Res Notes 13(1):1–7. https://doi.org/10.1186/s13104-020-4885-9

    Article  CAS  Google Scholar 

  69. Azizi O, Shahcheraghi F, Salimizand H, Modarresi F, Shakibaie MR, Mansouri Sh, Ramazanzadeh R, Badmasti F, Nikbin V (2016) Molecular analysis and expression of bap gene in biofilm-forming multi-drug-resistant Acinetobacter baumannii. Rep Biochem Mol Biol 5(1):62

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Nie D, Hu Y, Chen Z, Li M, Hou Z, Luo X, Mao X, Xue X (2020) Outer membrane protein A (OmpA) as a potential therapeutic target for Acinetobacter baumannii infection. J Biomed Sci 27(1):1–8. https://doi.org/10.1186/s12929-020-0617-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank from Loghman Hakim Hospital for generously providing the clinical samples.

Funding

This work was supported by Pasteur Institute of Iran (PII) grants No. 1936 and No. 66001900.

Author information

Authors and Affiliations

Authors

Contributions

NF: conceptualization, investigation, methodology, visualization, writing the manuscript, editing, analyzing the data and preparing the figures and tables, data collection from databases, designing the research, performed experiments. MO: developing and optimizing the model, editing, and validation. GB: data collection from databases, editing. SB and SDS: conceptualization, funding acquisition, methodology, project administration, supervision, validation, and designing the research. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Seyed Davar Siadat or Saeid Bouzari.

Ethics declarations

Ethics Approval

This study contained animal experiments. The ethical approval codes for this study were IR.PII.REC.1400.024 and IR.PII.AEC.1401.004.

Conflict of Interest

All authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzi, N., Oloomi, M., Bahramali, G. et al. Antibacterial Properties and Efficacy of LL-37 Fragment GF-17D3 and Scolopendin A2 Peptides Against Resistant Clinical Strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii In Vitro and In Vivo Model Studies. Probiotics & Antimicro. Prot. (2023). https://doi.org/10.1007/s12602-023-10070-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-023-10070-w

Keywords

Navigation