Skip to main content

Advertisement

Log in

Evaluation of Therapeutic Efficiency of Stylicin against Vibrio parahaemolyticus Infection in Shrimp Penaeus vannamei through Comparative Proteomic Approach

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The shrimp immune system defends and protects against infection by its naturally expressing antimicrobial peptides. Stylicin is a proline-rich anionic antimicrobial peptide (AMP) that exhibits potent antimicrobial activity. In this study, stylicin gene was isolated from Penaeus vannamei, cloned into vector pET-28a ( +), and overexpressed in Escherichia coli SHuffle T7 cells. The protein was purified and tested for its antibiofilm activity against shrimp pathogen Vibrio parahaemolyticus. It was resulted that the recombinant stylicin significantly reduced the biofilm formation of V. parahaemolyticus at a minimum inhibitory concentration (MIC) of 200 µg. Cell aggregation was observed by using scanning electron microscopy and confocal laser scanning microscopy, and it was resulted that stylicin administration significantly affects the cell structure and biofilm density of V. parahaemolyticus. In addition, real-time PCR confirmed the downregulation (p < 0.05) of genes responsible for growth and colonization. The efficacy of stylicin was tested by injecting it into shrimp challenged with V. parahaemolyticus and 7 days after infection, stylicin-treated animals recovered and survived better in both treatments (T2—100 µg stylicin, − 68.8%; T1—50 µg stylicin, 60%) than in control (7%) (p < 0.01). Comparative proteomic and mass spectrometry analysis of shrimp hemolymph resulted that the expressed proteins were involved in cell cycle, signal transduction, immune pathways, and stress-related proteins representing infection and recovery, and were significantly different in the stylicin-treated groups. The result of this study suggests that the stylicin can naturally boost immunity and can be used as a choice for treating V. parahaemolyticus infections in shrimp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Towards blue transformation – FAO (2020). https://www.fao.org.state-of-fisheries-aquaculture. Accessed on 29 August 2022

  2. SeafoodSource (2022). https://www.seafoodsource.com/news/supply-trade/expert-predicts-global-shrimp-production-will-exceed-5-million-metric-tons-for-first-time-in-2022.Accessed on 29 August 2022

  3. MPEDA (Marine Products Export Development Authority) 2020–21 (2021). Marine products Export Development Authority. https://mpeda.gov.in/?page_id=651. Accessed January 2022

  4. Emerenciano MG, Rombenso AN, Vieira FD, Martins MA, Coman GJ, Truong HH, Noble TH, Simon CJ (2022) Intensification of penaeid shrimp culture: an applied review of advances in production systems, nutrition and breeding. Animals 12(3):236. https://doi.org/10.3390/ani12030236

    Article  PubMed  PubMed Central  Google Scholar 

  5. de Souza Valente C, Wan AH (2021) Vibrio and major commercially important vibriosis diseases in decapod crustaceans. JInvertebrat Pathol 107527. https://doi.org/10.1016/j.jip.2020.107527

  6. Ibrahim WNW, Leong LK, Razzak LA, Musa N, Danish-Daniel M, Zainathan, SC, Musa N (2021) Virulence properties and pathogenicity of multidrug-resistant Vibrio harveyi associated with luminescent vibriosis in pacific white shrimp, Penaeus vannamei. J Invertebrat Pathol 107594. https://doi.org/10.1016/j.jip.2021.107594

  7. Soto-Rodriguez SA, Gomez-Gil B, Lozano R, del Rio-Rodríguez R, Diéguez AL, Romalde JL (2012) Virulence of Vibrio harveyi responsible for the “Bright-red” Syndrome in the Pacific white shrimp Litopenaeus vannamei. J Invertebrat Pathol 109(3):307–317. https://doi.org/10.1016/j.jip.2012.01.006

    Article  Google Scholar 

  8. Zhou J, Fang W, Yang X, Zhou S, Hu L, Li X, Qi X, Su H, Xie L (2012) A nonluminescent and highly virulent Vibrio harveyi strain is associated with “bacterial white tail disease” of Litopenaeus vannamei shrimp. PLoS ONE 7(2):e29961. https://doi.org/10.1371/journal.pone.0029961

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumar V, Roy S, Behera BK, Bossier P, Das BK (2021) Acute hepatopancreatic necrosis disease (AHPND): virulence, pathogenesis and mitigation strategies in shrimp aquaculture. Toxins 3(8):524. https://doi.org/10.3390/toxins13080524

    Article  Google Scholar 

  10. Ashrafudoulla M, Mizan M, Rahaman F, Park H, Byun KH, Lee N, Park SH, Ha SD (2019) Genetic relationship, virulence factors, drug resistance profile and biofilm formation ability of Vibrio parahaemolyticus isolated from mussel. Front Microbiol 10:513. https://doi.org/10.3389/fmicb.2019.00513

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yildiz FH, Visick KL (2009) Vibrio biofilms: so much the same yet so different. Trends Microbiol 17(3):109–118. https://doi.org/10.1016/j.tim.2008.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhong X, Lu Z, Wang F, Yao N, Shi M, Yang M (2022) Characterization of GefA, a GGEEF domain-containing protein that modulates Vibrio parahaemolyticus motility, biofilm formation, and virulence. Appl Environ Microbiol 88(6):e02239-e2321. https://doi.org/10.1128/aem.02239-21

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Strempel N, Strehmel J, Overhage J (2015) Potential application of antimicrobial peptides in the treatment of bacterial biofilm infections. Curr Pharm Des 21(1):67–84. https://doi.org/10.2174/1381612820666140905124312

    Article  CAS  PubMed  Google Scholar 

  14. Zhong C, Zhou Y, Zhao J, Fu J, Jiang T, Liu B, Chen F, Cao G (2021) High throughput sequencing reveals the abundance and diversity of antibiotic-resistant bacteria in aquaculture wastewaters, Shandong China. Biotech 11(2):1–13. https://doi.org/10.1007/s13205-021-02656-4

    Article  CAS  Google Scholar 

  15. Raheem N, Straus SK (2019) Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions. Front Microbiol 10:2866. https://doi.org/10.3389/fmicb.2019.02866

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lei J, Sun L, Huang S, Zhu C, Li P, He J, Mackey V, Coy DH, He Q (2019) The antimicrobial peptides and their potential clinical applications. Am J Tansl Res 11(7):3919. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684887/pdf/ajtr0011-3919.pdf

  17. Panigrahi A, Saranya C, Sundaram M, Kannan SV, Das RR, Kumar RS, Rajesh P, Otta SK (2018) Carbon: nitrogen (C: N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish Shellfish Immunol 81:329–337. https://doi.org/10.1016/j.fsi.2018.07.035

    Article  CAS  PubMed  Google Scholar 

  18. Wang PH, Wan DH, Gu ZH, Deng XX, Weng SP, Yu XQ, He JG (2011) Litopenaeus vannamei tumor necrosis factor receptor-associated factor 6 (TRAF6) responds to Vibrio alginolyticus and white spot syndrome virus (WSSV) infection and activates antimicrobial peptide genes. Dev Comp Immunol 35(1):105–114. https://doi.org/10.1016/j.dci.2010.08.013

    Article  CAS  PubMed  Google Scholar 

  19. Haney EF, Mansour SC, Hancock RE (2017) Antimicrobial peptides: an introduction. Antimicrol Peptides 3-22. https://doi.org/10.1007/978-1-4939-6737-7_1

  20. Yang W, Tran NT, Zhu CH, Yao DF, Aweya JJ, Gong Y, Ma HY, Zhang YL, Li GL, Li SK (2021) Immune priming in shellfish: a review and an updating mechanistic insight focused on cellular and humoral responses. Aquaculture 530:735831. https://doi.org/10.1016/j.a-quaculture.2020.735831

    Article  CAS  Google Scholar 

  21. Rolland JL, Abdelouahab M, Dupont J, Lefevre F, Bachère E, Romestand B (2010) Stylicins, a new family of antimicrobial peptides from the Pacific blue shrimp Litopenaeus stylirostris. Mol Immunol 47(6):1269-1277. https://doi.org/10.1016/j.molimm.2009.12.007

  22. Liu HT, Wang J, Mao Y, Liu M, Niu SF, Qiao Y, Su YQ, Wang CZ, Zheng ZP (2015) Identification and expression analysis of a novel stylicin antimicrobial peptide from Kuruma shrimp (Marsupenaeus japonicus). Fish Shellfish Immunol 47(2):817–823. https://doi.org/10.1016/j.fsi.2015.09.044

    Article  CAS  PubMed  Google Scholar 

  23. Farias ND, Falchetti M, Matos GM, Schmitt P, Barreto C, Argenta N, Rolland JL, Bachère E, Perazzolo LM, Rosa RD (2019) Litopenaeus vannamei stylicins are constitutively produced by hemocytes and intestinal cells and are differentially modulated upon infections. Fish Shellfish Immunol 86:82–92. https://doi.org/10.1016/j.fsi.2018.11.021

    Article  CAS  PubMed  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  25. Panigrahi A, Esakkiraj P, Jayashree S, Saranya C, Das RR, Sundaram M (2019) Colonization of enzymatic bacterial flora in biofloc grown shrimp Penaeus vannamei and evaluation of their beneficial effect. Aquac Int 27(6):1835–1846. https://doi.org/10.1007/s10499-019-00434-x

    Article  CAS  Google Scholar 

  26. Selvaraj A, Valliammai A, Sivasankar C, Suba M, Sakthivel G, Pandian SK (2020) Antibiofilm and antivirulence efficacy of myrtenol enhances the antibiotic susceptibility of Acinetobacter baumannii. Sci Rep 10(1):1–14. https://doi.org/10.1038/s41598-020-79128-x

    Article  CAS  Google Scholar 

  27. Hong XP, Xu D, Zhuo Y, Liu HQ, Lu LQ (2016) Identification and pathogenicity of Vibrio parahaemolyticus isolates and immune responses of Penaeus (Litopenaeus) vannamei (Boone). J. fish dis.39(9):1085–97. https://doi.org/10.1111/jfd.12441

  28. Corteel M, Thanh NC et al (2009) Effect of dose and challenge routes of Vibrio spp. on co-infection with white spot syndrome virus in Penaeus vannamei. Aquaculture 290(1–2):61–68. https://doi.org/10.1016/j.aquaculture.2009.02.004

  29. Ananthi S, Venkatesh Prajna N, Lalitha P, Valarnila M, Dharmalingam K (2013) Pathogen induced changes in the protein profile of human tears from Fusarium keratitis patients. PLoS ONE 8(1):e53018. https://doi.org/10.1371/journal.pone.0053018

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Panigrahi A, Esakkiraj P, Das RR, Saranya C, Vinay TN, Otta SK, Shekhar MS (2021) Bioaugmentation of biofloc system with enzymatic bacterial strains for high health and production performance of Penaeus indicus. Sci Rep 11(1):1–13. https://doi.org/10.1038/s41598-021-93065-3

    Article  CAS  Google Scholar 

  31. Aguirre-Guzman G, Sanchez-Martinez JG, Campa-Cordova AI, Luna-Gonzalez A, Ascencio F (2009) Penaeid shrimp immune system. Thai J Vet Med 39(3):205–215

    Article  Google Scholar 

  32. Junprung W, Supungul P, Tassanakajon A (2019) Litopenaeus vannamei heat shock protein 70 (LvHSP70) enhances resistance to a strain of Vibrio parahaemolyticus, which can cause acute hepatopancreatic necrosis disease (AHPND), by activating shrimp immunity. Dev Comp Immunol 90:138–146. https://doi.org/10.1016/j.dci.2018.09.011

    Article  CAS  PubMed  Google Scholar 

  33. Amparyup P, Charoensapsri W, Tassanakajon A (2013) Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish Shellfish Immunol 34(4):990–1001. https://doi.org/10.1016/j.fsi.2012.08.019

    Article  CAS  PubMed  Google Scholar 

  34. Shekhar MS, Ponniah AG (2015) Recent insights into host–pathogen interaction in white spot syndrome virus infected penaeid shrimp. J fish dis 38(7):599–612. https://doi.org/10.1111/jfd.12279

    Article  CAS  PubMed  Google Scholar 

  35. Destoumieux-Garzón D, Rosa RD, Schmitt P, Barreto C, Vidal-Dupiol J, Mitta G, Gueguen Y, Bachere E (2016) Antimicrobial peptides in marine invertebrate health and disease. Philos Trans R Soc Lond B Biol Sci 371(1695):20150300. https://doi.org/10.1098/2Frstb.2015.0300

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tassanakajon A, Rimphanitchayakit V, Visetnan S, Amparyup P, Somboonwiwat K, Charoensapsri W, Tang S (2018) Shrimp humoral responses against pathogens: antimicrobial peptides and melanization. Dev Comp Immunol 80:81–93. https://doi.org/10.1016/j.dci.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  37. Da Costa JP, Cova M, Ferreira R, Vitorino R (2015) Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol 99(5):2023–2040. https://doi.org/10.1007/s00253-015-6375-x

    Article  CAS  PubMed  Google Scholar 

  38. Paulsen VS, Blencke HM, Benincasa M, Haug T, Eksteen JJ, Styrvold OB, Scocchi M, Stensvåg K (2013) Structure-activity relationships of the antimicrobial peptide arasin 1—and mode of action studies of the N-terminal, proline-rich region. PLoS ONE 8(1):e53326. https://doi.org/10.1371/journal.pone.0053326

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Paulsen VS, Mardirossian M, Blencke HM, Benincasa M, Runti G, Nepa M, Haug T, Stensvåg K, Scocchi M (2016) Inner membrane proteins YgdD and SbmA are required for the complete susceptibility of Escherichia coli to the proline-rich antimicrobial peptide arasin 1 (1–25). Microbiology 162(4):601–609. https://doi.org/10.1099/mic.0.000249

    Article  CAS  PubMed  Google Scholar 

  40. Imjongjirak C, Amphaiphan P, Charoensapsri W, Amparyup P (2017) Characterization and antimicrobial evaluation of SpPR-AMP1, a proline-rich antimicrobial peptide from the mud crab Scylla paramamosain. Dev Comp Immunol 74:209–216. https://doi.org/10.1016/j.dci.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  41. Jeżowska-Bojczuk M, Stokowa-Sołtys K (2018) Peptides having antimicrobial activity and their complexes with transition metal ions. Eur J Med Chem 143:997–1009. https://doi.org/10.1016/j.ejmech.2017.11.086

    Article  CAS  PubMed  Google Scholar 

  42. Limoli DH, Jones CJ, Wozniak DJ (2015) Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr 3(3):3–3. https://doi.org/10.1128/microbiolspec.MB-0011-2014

    Article  Google Scholar 

  43. Tolker-Nielsen T (2015) Biofilm development Microbiol spectr 3(2):2–3. https://doi.org/10.1128/microbiolspec.MB-0001-2014

    Article  CAS  Google Scholar 

  44. Mizan MFR, Jahid IK, Ha SD (2015) Microbial biofilms in seafood: a food-hygiene challenge. Food Microbiol 49:41–55. https://doi.org/10.1016/j.fm.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  45. Wang L, Ling Y, Jiang H, Qiu Y, Qiu J, Chen H, Yang R, Zhou D (2013) AphA is required for biofilm formation, motility, and virulence in pandemic Vibrio parahaemolyticus. Int J Food Microbiol 160(3):245–251. https://doi.org/10.1016/j.ijfoodmicro.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Qiu Y, Tan Y, Guo Z, Yang R, Zhou D (2012) Transcriptional regulation of opaR, qrr2–4 and aphA by the master quorum-sensing regulator OpaR in Vibrio parahaemolyticus. PLoS ONE 7(4):e34622. https://doi.org/10.1371/journal.pone.0034622

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiang F, Lei T, Wang Z, He M, Zhang J, Wang J, Zeng H, Chen M, Xue L, Ye Q, Pang R (2021) A novel gene vp0610 negatively regulates biofilm formation in Vibrio parahaemolyticus. Front Microbiol 12:800. https://doi.org/10.3389/fmicb.2021.656380

    Article  ADS  Google Scholar 

  48. Zhang Y, Gao H, Osei-Adjei G, Zhang Y, Yang W, Yang H, Yin Z, Huang X, Zhou D (2017) Transcriptional regulation of the type VI secretion system 1 genes by quorum sensing and ToxR in Vibrio parahaemolyticus. Front Microbiol 8:2005. https://doi.org/10.3389/fmicb.2017.02005

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lu R, Sun J, Qiu Y, Zhang M, Xue X, Li X, Yang W, Zhou D, Hu L, Zhang Y (2021) The quorum sensing regulator OpaR is a repressor of polar flagellum genes in Vibrio parahaemolyticus. J Microbiol 1–7. https://doi.org/10.1007/s12275-021-0629-3

  50. Zhang Y, Qiu Y, Gao H, Sun J, Li X, Zhang M, Xue X, Yang W, Ni B, Hu L, Yin Z (2021). OpaR controls the metabolism of c-di-GMP in Vibrio parahaemolyticus. Front Microbiol 12. https://doi.org/10.3389/2Ffmicb.2021.676436

  51. Kim YB, Okuda JU, Matsumoto C, Takahashi N, Hashimoto S, Nishibuchi M (1999) Identification of Vibrio parahaemolyticus strains at the species level by PCR targeted to the toxR gene. J Clin Microbiol 37(4):1173–1177. https://doi.org/10.1128/JCM.37.4.1173-1177.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang L, Wang L, Lin X, Su Y, Qin Y, Kong W, Zhao L, Xu X, Yan Q (2017) mcp, aer, cheB, and cheV contribute to the regulation of Vibrio alginolyticus (ND-01) adhesion under gradients of environmental factors. Microbiol open 6(6):e00517. https://doi.org/10.1002/mbo3.517

    Article  CAS  Google Scholar 

  53. Qiao Y, Feng L, Jia R, Luo Y, Yang Q (2021) Motility, biofilm formation and associated gene expression in Vibrio parahaemolyticus impaired by co-culture with live Ulva fasciata. J Appl Microbiol 132(1):101–112. https://doi.org/10.1111/jam.15175

    Article  CAS  PubMed  Google Scholar 

  54. Liu R, Zheng R, Liu G, Sun C (2020) The cyclic lipopeptides suppress the motility of Vibrio alginolyticus via targeting the Na+-driven flagellar motor component MotX. Environ Microbiol 22(10):4424–4437. https://doi.org/10.1111/1462-2920.15144

    Article  CAS  PubMed  Google Scholar 

  55. Wang X, Wei Z, Wu H, Li Y, Han F, Yu W (2021) Characterization of a hyaluronic acid utilization locus and identification of two hyaluronate lyases in a marine bacterium Vibrio alginolyticus LWW-9. Front Microbiol 12:1491. https://doi.org/10.3389/fmicb.2021.696096

    Article  Google Scholar 

  56. Mao Z, Yu L, You Z, Wei Y, Liu Y (2007) Cloning, expression and immunogenicity analysis of five outer membrane proteins of Vibrio parahaemolyticus zj2003. Fish Shellfish Immunol 23(3):567–575. https://doi.org/10.1016/j.fsi.2007.01.004

    Article  CAS  PubMed  Google Scholar 

  57. Moravec AR, Siv AW, Hobby CR, Lindsay EN, Norbash LV, Shults DJ, Symes SJ, Giles DK (2017) Exogenous polyunsaturated fatty acids impact membrane remodeling and affect virulence phenotypes among pathogenic Vibrio species. Appl Environmental Microbiol 83(22):e01415-e1417. https://doi.org/10.1128/AEM.01415-17

    Article  ADS  CAS  Google Scholar 

  58. Xiu P, Liu R, Zhang D, Sun C (2017) Pumilacidin-like lipopeptides derived from marine bacterium Bacillus sp. strain 176 suppress the motility of Vibrio alginolyticus. Appl Environ Microbiol 83(12):e00450–17. https://doi.org/10.1128/AEM.00450-17

  59. Esakkiraj P, Bharathi C, Ayyanna R, Jha N, Panigrahi A, Karthe P, Arul V (2022) Functional and molecular characterization of a cold-active lipase from Psychrobacter celer PU3 with potential antibiofilm property. Int J Biol Macromol 211:741–753

    Article  CAS  PubMed  Google Scholar 

  60. Yang H, Li S, Li F, Yu K, Yang F, Xiang J (2016) Recombinant expression of a modified shrimp anti-lipopolysaccharide factor gene in Pichia pastoris GS115 and its characteristic analysis. Mar Drugs 14(8):152. https://doi.org/10.3390/md14080152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ji JE, Kim SK, Ahn KH, Choi JM, Jung SY, Jung KM, Jeon HJ, Kim DK (2011) Ceramide induces serotonin release from RBL-2H3 mast cells through calcium mediated activation of phospholipase A2. Prostaglandins Other Lipid Mediat 94(3–4):88–95. https://doi.org/10.1016/j.prostaglandins.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  62. Gershlick DC, Schindler C, Chen Y, Bonifacino JS (2016) TSSC1 is novel component of the endosomal retrieval machinery. Mol Biol Cell 27(18):2867–2878. https://doi.org/10.1091/mbc.E16-04-0209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li X, Zhang F, Jiang K, Zhao W, Zhao M, Song W, Ma L (2016) Two genes with fertile attributes from Macrobrachium nipponense (De Haan, 1849) (Natantia: Palaemonidae): evidence from expression analysis of Mago nashi and Tsunagi proteins during oocyte maturation and embryonic development. J Crust Biol 36(2):229–237. https://doi.org/10.1163/1937240X-00002419

    Article  CAS  Google Scholar 

  64. Kallunki P, Tryggvason K (1992) Human basement membrane heparan sulfate proteoglycan core protein: a 467-kD protein containing multiple domains resembling elements of the low-density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J cell Biol 116(2):559–571. https://doi.org/10.1083/jcb.116.2.559

    Article  CAS  PubMed  Google Scholar 

  65. Sun JJ, Lan JF, Xu JD, Niu GJ, Wang JX (2016) Suppressor of cytokine signaling 2 (SOCS2) negatively regulates the expression of antimicrobial peptides by affecting the Stat transcriptional activity in shrimp Marsupenaeus japonicus. Fish Shellfish Immunol 56:473–482. https://doi.org/10.1016/j.fsi.2016.07.037

    Article  CAS  PubMed  Google Scholar 

  66. Zhu XJ, Xiong Y, He W, Jin Y, Qian YQ, Liu J, Dai ZM (2018) Molecular cloning and expression analysis of a prawn (Macrobrachium rosenbergii) juvenile hormone esterase-like carboxylesterase following immune challenge. Fish Shellfish Immunol 80:10–14. https://doi.org/10.1016/j.fsi.2018.05.039

    Article  CAS  PubMed  Google Scholar 

  67. Brown MD, Sacks DB (2009) Protein scaffolds in MAP kinase signalling. Cell Signal 21(4):462–469. https://doi.org/10.1016/j.cellsig.2008.11.013

    Article  CAS  PubMed  Google Scholar 

  68. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75(1):50–83. https://doi.org/10.1128/MMBR.00031-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rohrback SE, Wheatly MG, Gillen CM (2015) Calcium binding to Procambarus clarkii sarcoplasmic calcium binding protein splice variants. Comp Biochem Physiol B Biochem Mol Biol 179:57–63. https://doi.org/10.1016/j.cbpb.2014.09.008

    Article  CAS  PubMed  Google Scholar 

  70. Soutourina J (2018) Transcription regulation by the Mediator complex. Nat Rev Mol Cell Biol 19(4):262–274. https://doi.org/10.1038/nrm.2017.115

    Article  CAS  PubMed  Google Scholar 

  71. Lim S, Kaldis P (2013) Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140(15):3079–3093. https://doi.org/10.1242/dev.091744

    Article  CAS  PubMed  Google Scholar 

  72. Gyan WR, Yang Q, Tan B, Jan SS, Jiang L, Chi S, Dong X, Liu H, Shuang Z (2020) Effects of antimicrobial peptides on growth, feed utilization, serum biochemical indices and disease resistance of juvenile shrimp Litopenaeus vannamei. Aquacult Res 51(3):1222–1231. https://doi.org/10.1111/are.14473

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the Department of Biotechnology (DBT) (DBT/PR11721/AAQ/683/2014), India, and special thanks are due to the Director, ICAR – Central Institute of Brackishwater Aquaculture, for providing the necessary facilities.

Funding

The work was financially supported by the Department of Biotechnology (DBT), Ministry of Science & Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

CS and PE—execution of the experiment, sampling, data analysis, and drafting the manuscript; AP—conceptualizing the study, interpreting results, and fund management; SK—carried out scanning electron microscopy; NKexecution of the experiment; PP—carried out microscopic analysis; RN—carried out 2D gel electrophoresis.

Corresponding author

Correspondence to Akshaya Panigrahi.

Ethics declarations

Ethics Approval

The research undertaken complies with the current animal welfare laws of India. The study was undertaken with the approval of the statutory authorities of the Central Institute of Brackishwater Aquaculture, Chennai, India. The experimental animal Penaeus vannamei is not an endangered shrimp; hence, the provisions of the Government of India’s Wildlife Protection Act of 1972 are not applicable for experiments on this shrimp.

Informed Consent

All co-authors have given their consent for publishing this manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2867 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrapani, S., Panigrahi, A., Palanichamy, E. et al. Evaluation of Therapeutic Efficiency of Stylicin against Vibrio parahaemolyticus Infection in Shrimp Penaeus vannamei through Comparative Proteomic Approach. Probiotics & Antimicro. Prot. 16, 76–92 (2024). https://doi.org/10.1007/s12602-022-10006-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-022-10006-w

Keywords

Navigation