Skip to main content
Log in

Diets Supplemented with Probiotics Improve the Performance of Broilers Exposed to Heat Stress from 15 Days of Age

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The poultry sector demands alternative additives to antibiotics that can be used as performance enhancers. Therefore, this experiment was conducted to evaluate the probiotics effects on performance, intestinal health, and redox status of 720 broilers exposed to heat stress from 15 days of age. Eight dietary treatments were evaluated: basal diet (BD) without antibiotic and probiotic (T1); BD supplemented with antibiotic zinc bacitracin (T2), BD supplemented with commercial probiotic of Bacillus subtilis DSM 17,299 (T3), BD supplemented with non-commercial probiotic of Lactococcus lactis NCDO 2118, Lactobacillus delbrueckii CNRZ 327, Escherichia coli CEC15, or Saccharomyces boulardii (T4 to T7), and BD simultaneously supplemented with the four non-commercial probiotics (T8). Feed intake, weight gain, and feed conversion were determined in the period from 1 to 42 days of age. Carcass and cuts yield, abdominal fat deposition, cloacal temperature, weight and length of intestine, activity of myeloperoxidase and eosinophilic peroxidase enzymes in the jejunum, jejunal histomorphometry, relative gene expression in the jejunum (occludin, zonulin, interleukin-8, cholecystokinin, ghrelin, and heat shock protein-70), and liver (heat shock protein-70), in addition to malondialdehyde level and superoxide dismutase activity in the intestine, liver, and blood, were measured in broilers at 42 days old. As main results, broilers fed T1 diet exhibited lower weight gain (3.222 kg) and worse feed conversion (1.70 kg/kg). However, diets containing non-commercial probiotics resulted in up to 3.584 kg of weight gain and improved feed conversion by up to 10%, similar to that observed for broilers of the T2 and T3 groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during this study are included in this published article. The supplementary information files are available from the Luciana de P. Naves on reasonable request. E-mail: luciananaves@ufla.br.

References

  1. Brazilian Association of Animal Protein (2022) Annual report of the Brazilian Association of Animal Protein. https://abpa-br.org/wp-content/uploads/2022/05/Relatorio-Anual-ABPA-2022-1.pdf. Accessed 23 May 2022

  2. Salim HMD, Huque KS, Kamaruddin KM, Beg AH, Beg AH (2018) Global restriction of using antibiotic growth promoters and alternative strategies in poultry production. Sci Prog 101:52–75. https://doi.org/10.3184/003685018X15173975498947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oliveira NA, Gonçalves BL, Lee SH, Oliveira CAF, Corassin CH (2020) Use of antibiotics in animal production and its impact on human health. J Food Chem Nanotechnol 6:40–47. https://doi.org/10.17756/jfcn.2020-082

  4. Rafiq K, Hossain MT, Ahmed R, Hasan MM, Islam R, Hossen MI et al (2022) Role of different growth enhancers as alternative to in-feed antibiotics in poultry industry. Front Vet Sci 8:794588. https://doi.org/10.3389/fvets.2021.794588

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wu Y, Wang B, Zeng Z, Liu R, Tang L, Gong L et al (2019) Effects of probiotics Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 on intestinal barrier function, antioxidative capacity, apoptosis, immune response, and biochemical parameters in broilers. Poult Sci 98:5028–5039. https://doi.org/10.3382/ps/pez226

    Article  CAS  PubMed  Google Scholar 

  6. Amerah AM, Rensburg CJV, Plumstead PW, Kromm C, Dunham S (2013) Effect of feeding diets containing a probiotic or antibiotic on broiler performance, intestinal mucosa-associated avian pathogenic E. coli and litter water-soluble phosphorus. J Appl Anim Nutr 1:1–7. https://doi.org/10.1017/jan.2013.4

    Article  Google Scholar 

  7. Reis MP, Fassani EJ, Garcia Júnior AAP, Rodrigues PB, Bertechini AG, Barrett N et al (2017) Effect of Bacillus subtilis (DSM 17299) on performance, digestibility, intestine morphology, and pH in broiler chickens. J Appl Poult Res 26:573–583. https://doi.org/10.3382/japr/pfx032

    Article  CAS  Google Scholar 

  8. Liu L, Ren M, Ren K, Jin Y, Yang M (2020) Heat stress impacts on broiler performance: a systematic review and meta-analysis. Poult Sci 99:6205–6211. https://doi.org/10.1016/j.psj.2020.08.019

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nawaz AH, Amoah K, Leng QY, Zheng JH, Zhang WL, Zhang L (2021) Poultry response to heat stress: its physiological, metabolic, and genetic implications on meat production and quality including strategies to improve broiler production in a warming world. Front Vet Sci 8:699081. https://doi.org/10.3389/fvets.2021.699081

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rostagno MH (2020) Effects of heat stress on the gut health of poultry. J Anim Sci 98:1–9. https://doi.org/10.1093/jas/skaa090

    Article  Google Scholar 

  11. Lara LJ, Rostagno MH (2013) Impact of heat stress on poultry production. Animals 3:356–369. https://doi.org/10.3390/ani3020356

    Article  PubMed  PubMed Central  Google Scholar 

  12. St-Pierre NR, Cobanov B, Schnitkey G (2003) Economic losses from heat stress by US livestock industries. J Dairy Sci 86:E52–E77. https://doi.org/10.3168/jds.S0022-0302(03)74040-5

    Article  Google Scholar 

  13. Wang WC, Yan FF, Hu JY, Amen OA, Cheng HW (2018) Supplementation of Bacillus subtilis-based probiotic reduces heat stress-related behaviors and inflammatory response in broiler chickens. J Anim Sci 96:1654–1666. https://doi.org/10.1093/jas/sky092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sohail MU, Ijaz A, Yonus M, Shabbir MZ, Kamran Z, Ahmad S et al (2013) Effect of supplementation of mannan oligosaccharide and probiotic on growth performance, relative weights of viscera, and population of selected intestinal bacteria in cyclic heat-stressed broilers. J Appl Poult Res 22:485–491. https://doi.org/10.3382/japr.2012-00682

    Article  CAS  Google Scholar 

  15. Al-Fataftah AR, Abdelqader A (2014) Effects of dietary Bacillus subtilis on heat-stressed broilers performance, intestinal morphology and microflora composition. Anim Feed Sci Technol 198:279–285. https://doi.org/10.1016/j.anifeedsci.2014.10.012

    Article  CAS  Google Scholar 

  16. Jahromi MF, Altaher YW, Shokryazdan P, Ebrahimi R, Ebrahimi M, Idrus Z et al (2016) Dietary supplementation of a mixture of Lactobacillus strains enhances performance of broiler chickens raised under heat stress conditions. Int J Biometeorol 60:1099–1110. https://doi.org/10.1007/s00484-015-1103-x

    Article  Google Scholar 

  17. Abdelqader A, Abuajamieh M, Hayajneh F, Al-Fataftah AR (2020) Probiotic bacteria maintain normal growth mechanisms of heat stressed broiler chickens. J Therm Biol 92:102654. https://doi.org/10.1016/j.jtherbio.2020.102654

    Article  CAS  PubMed  Google Scholar 

  18. Sugiharto S, Yudiarti T, Isroli I, Widiastuti E, Kusumanti E (2017) Dietary supplementation of probiotics in poultry exposed to heat stress—a review. Ann Anim Sci 17:591–604. https://doi.org/10.1515/aoas-2016-0062

    Article  CAS  Google Scholar 

  19. Li Q, Wan G, Peng C, Xu L, Yu Y, Li L et al (2020) Effect of probiotic supplementation on growth performance, intestinal morphology, barrier integrity, and inflammatory response in broilers subjected to cyclic heat stress. Anim Sci J 91:e13433. https://doi.org/10.1111/asj.13433

    Article  CAS  PubMed  Google Scholar 

  20. Luerce TD, Gomes-Santos AC, Rocha CS, Moreira TG, Cruz DN, Lemos L et al (2014) Anti-inflammatory effects of Lactococcus lactis NCDO 2118 during the remission period of chemically induced colitis. Gut Pathog 6:33. https://doi.org/10.1186/1757-4749-6-33

    Article  PubMed  PubMed Central  Google Scholar 

  21. Oliveira LC, Saraiva TDL, Silva WM, Pereira UP, Campos BC, Benevides LJ et al (2017) Analyses of the probiotic property and stress resistance-related genes of Lactococcus lactis subsp. lactis NCDO 2118 through comparative genomics and in vitro assays. PLoS ONE 12:e0175116. https://doi.org/10.1371/journal.pone.0175116

  22. Rocha CS, Lakhdari O, Blottiere HM, Blugeon S, Sokol H, Bermúdez-Humarán LG et al (2012) Anti-inflammatory properties of dairy Lactobacilli. Imflamm Bowel Dis 18:657–666. https://doi.org/10.1002/ibd.21834

    Article  Google Scholar 

  23. Rocha CS, Gomes-Santos AC, Moreira TG, Azevedo M, Luerce TD, Mariadassou M et al (2014) Local and systemic immune mechanisms underlying the anti-colitis effects of the dairy bacterium Lactobacillus delbrueckii. PLoS ONE 9:e85923. https://doi.org/10.1371/journal.pone.0085923

    Article  CAS  Google Scholar 

  24. Escribano-Vazquez U, Verstraeten S, Martin R, Chain F, Langella P, Thomas M et al (2019) The commensal Escherichia coli CEC15 reinforces intestinal defences in gnotobiotic mice and is protective in a chronic colitis mouse model. Sci Rep 9:11431. https://doi.org/10.1038/s41598-019-47611-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sarkar SR, Mazumder PM, Chatterjee K, Sarkar A, Adhikary M, Mukhopadhyay K et al (2021) Saccharomyces boulardii ameliorates gut dysbiosis associated cognitive decline. Physiol Behav 236:113411. https://doi.org/10.1016/j.physbeh.2021.113411

    Article  CAS  PubMed  Google Scholar 

  26. Cobb Vantress (2018) Broiler management guide. https://www.cobb-vantress.com/assets/5c7576a214/Broiler-guide-R1.pdf. Accessed 29 July 2022

  27. Cheng YF, Chen YP, Chen R, Su Y, Zhang RQ, He QF et al (2019) Dietary mannan oligosaccharide ameliorates cyclic heat stress-induced damages on intestinal oxidative status and barrier integrity of broilers. Poult Sci 98:4767–4776. https://doi.org/10.3382/ps/pez192

    Article  CAS  PubMed  Google Scholar 

  28. Mahmoud UT, Abdel-Rahman MA, Darwish MHA, Applegate TJ, Cheng HW (2015) Behavioral changes and feathering score in heat stressed broiler chickens fed diets containing different levels of propolis. Appl Anim Behav Sci 166:98–105. https://doi.org/10.1016/j.applanim.2015.03.003

    Article  Google Scholar 

  29. Mohammed AA, Jacobs JA, Murugesan GR, Cheng HW (2018) Effect of dietary synbiotic supplement on behavioral patterns and growth performance of broiler chickens reared under heat stress. Poult Sci 97:1101–1108. https://doi.org/10.3382/ps/pex421

    Article  CAS  PubMed  Google Scholar 

  30. Jiang S, Mohammed AA, Jacobs JA, Cramer TA, Cheng HW (2020) Effect of synbiotics on thyroid hormones, intestinal histomorphology, and heat shock protein 70 expression in broiler chickens reared under cyclic heat stress. Poult Sci 99:142–150. https://doi.org/10.3382/ps/pez571

    Article  CAS  PubMed  Google Scholar 

  31. Gomide EM, Rodrigues PB, Naves LP, Bernadino VMP, Bertechini AG, Fassani EJ et al (2014) Phytase and amino acids for broilers from 36 to 42 days of age. Rev Bras Ciênc Agrár 9:295–300. https://www.redalyc.org/articulo.oa?id=119031262023

  32. Fernandes BCS, Martins MRFB, Mendes AA, Milbrandt EL, Sanfelice C, Martins BB et al (2014) Intestinal integrity and performance of broiler chickens fed a probiotic, a prebiotic, or an organic acid. Braz J Poult Sci 16:417–424. https://doi.org/10.1590/1516-635X1604417-424

    Article  Google Scholar 

  33. Bradley PP, Christensen RS, Rothstein G (1982) Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood 60:618–622. https://doi.org/10.1182/blood.V60.3.618.618

    Article  CAS  PubMed  Google Scholar 

  34. Vieira ELM, Leonel AJ, Sad AP, Beltrão NRM, Costa TF, Ferreira TMR et al (2012) Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. J Nutr Biochem 23:430–436. https://doi.org/10.1016/j.jnutbio.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  35. Dong L, Zhong X, Ahmad H, Li W, Wang Y, Zhang L et al (2014) Intrauterine growth restriction impairs small intestinal mucosal immunity in neonatal piglets. J Histochem Cytochem 62:510–518. https://doi.org/10.1369/0022155414532655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kisielinski K, Willis S, Prescher A, Klosterhalfen B, Schumpelick V (2002) A simple new method to calculate small intestine absorptive surface in the rat. Clin Exp Med 2:131–135. https://doi.org/10.1007/s102380200018

    Article  CAS  PubMed  Google Scholar 

  37. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  38. SAS Institute Inc (2012) SAS OnDemand for academics. Institute Inc., Cary, NC, USA. https://odamid.oda.sas.com/SASStudio/ Accessed 05 February 2022

  39. Thirumalaisamy G, Muralidharan J, Senthilkumar S, Sayee RH, Priyadharsini M (2016) Cost-effective feeding of poultry. Int j sci environ 5:3997–4005. https://www.ijset.net/journal/1410.pdf

  40. Rehman A, Arif M, Sajjad N, Al-Ghadi MQ, Alagawany M, Abdel-Hack ME et al (2020) Dietary effect of probiotics and prebiotics on broiler performance, carcass, and immunity. Poult Sci 99:6946–6953. https://doi.org/10.1016/j.psj.2020.09.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Edgar JL, Nicol CJ, Pugh CA, Paul ES (2013) Surface temperature changes in response to handling in domestic chickens. Physiol Behav 119:195–200. https://doi.org/10.1016/j.physbeh.2013.06.020

    Article  CAS  PubMed  Google Scholar 

  42. Aluwong T, Sumanu VO, Ayo JO, Ocheja B, Zakari F, Minka N (2017) Daily rhythms of cloacal temperature in broiler chickens of different age groups administered with zinc gluconate and probiotic during the hot-dry season. Physiol Rep 5:e13314. https://doi.org/10.14814/phy2.13314

  43. Sumanu VO, Aluwong T, Ayo JO, Ogbuagu NE (2021) Cloacal temperature responses of broiler chickens administered with fisetin and probiotic (Saccharomyces cerevisiae) and exposed to heat stress. Experimental Results 2:1–12. https://doi.org/10.1017/exp.2021.15

    Article  Google Scholar 

  44. Macari M, Furlan RL (2001) Environment in poultry production. In: Silva IJO (ed) Environment in poultry production of tropical climate, 2nd edn. FUNEP, Piracicaba, pp 31–87

  45. Wang X, Farnell YZ, Peebles ED, Kiess AS, Wamsley KGS, Zhai W (2016) Effects of prebiotics, probiotics, and their combination on growth performance, small intestine morphology, and resident Lactobacillus of male broilers. Poult Sci 95:1332–1340. https://doi.org/10.3382/ps/pew030

    Article  CAS  PubMed  Google Scholar 

  46. Ashraf S, Zaneb H, Yousaf MS, Ijaz A, Sohail MU, Muti S et al (2013) Effect of dietary supplementation of prebiotics and probiotics on intestinal microarchitecture in broilers reared under cyclic heat stress. J Anim Physiol Anim Nutr 1:68–73. https://doi.org/10.1111/jpn.12041

    Article  Google Scholar 

  47. Chen J, Tellez G, Richards JD, Escobar J (2015) Identification of potential biomarkers for gut barrier failure in broiler chickens. Front Vet Sci 2:14. https://doi.org/10.3389/fvets.2015.00014

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gilani S, Howarth GS, Kitessa SM, Forder REA, Tran CD, Hughes RJ (2016) New biomarkers for intestinal permeability induced by lipopolysaccharide in chickens. Anim Prod Sci 56:1984–1997. https://doi.org/10.1071/AN15725

    Article  CAS  Google Scholar 

  49. Chen S, Xue Y, Shen Y, Ju H, Zhang X, Liu J et al (2022) Effects of different selenium sources on duodenum and jejunum tight junction network and growth performance of broilers in a model of fluorine-induced chronic oxidative stress. Poult Sci 101:101664. https://doi.org/10.1016/j.psj.2021.101664

    Article  CAS  PubMed  Google Scholar 

  50. Lee SH (2015) Intestinal permeability regulation by tight junction: Implication on inflammatory bowel diseases. Intest Res 13:11–18. https://doi.org/10.5217/ir.2015.13.1.11

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sturgeon C, Fasano A (2016) Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 4:e1251384. https://doi.org/10.1080/21688370.2016.1251384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vieira AT, Fagundes CT, Alessandri AL, Castor MGM, Guabiraba R, Borges VO et al (2009) Treatment with a novel chemokine-binding protein or eosinophil lineage-ablation protects mice from experimental colitis. Am J Pathol 175:2382–2391. https://doi.org/10.2353/ajpath.2009.090093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wigley P, Kaiser P (2003) Avian cytokines in health and disease. Braz J Poult Sci 5:1–14. https://doi.org/10.1590/S1516-635X2003000100001

    Article  Google Scholar 

  54. Han H, Yi B, Zhong R, Wang M, Zhang S, Ma J et al (2021) From gut microbiota to host appetite: gut microbiota-derived metabolites as key regulators. Microbiome 9:162. https://doi.org/10.1186/s40168-021-01093-y

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dunn IC, Meddle SL, Wilson PW, Wardle CA, Law AS, Bishop VR et al (2013) Decreased expression of the satiety signal receptor CCKAR is responsible for increased growth and body weight during the domestication of chickens. Am J Physiol Endocrinol Metab 304:E909–E921. https://doi.org/10.1152/ajpendo.00580.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lei L, Hepeng L, Xianlei L, Hongchao J, Hai L, Sheikhahmadi A et al (2013) Effects of acute heat stress on gene expression of brain-gut neuropeptides in broiler chickens. J Anim Sci 91:5194–5201. https://doi.org/10.2527/jas.2013-6538

    Article  CAS  PubMed  Google Scholar 

  57. Gu XH, Hao Y, Wang XL (2012) Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers: 2. Intestinal oxidative stress Poult Sci 91:790–799. https://doi.org/10.3382/ps.2011-01628

    Article  CAS  PubMed  Google Scholar 

  58. Song Z, Cheng K, Zhang L, Wang T (2017) Dietary supplementation of enzymatically treated Artemisia annua could alleviate the intestinal inflammatory response in heat-stressed broilers. J Therm Biol 69:184–190. https://doi.org/10.1016/j.jtherbio.2017.07.015

    Article  CAS  PubMed  Google Scholar 

  59. Sohail MU, Ijaz A, Yousaf MS, Ashraf K, Zaneb H, Aleem M et al (2010) Alleviation of cyclic heat stress in broilers by dietary supplementation of mannan-oligosaccharide and Lactobacillus-based probiotic: dynamics of cortisol, thyroid hormones, cholesterol, c-reactive protein, and humoral immunity. Poult Sci 89:1934–1938. https://doi.org/10.3382/ps.2010-00751

    Article  CAS  PubMed  Google Scholar 

  60. Sohail UM, Hume ME, Byrd JA, Nisbet DJ, Ijaz A, Sohail A et al (2012) Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poult Sci 91:2235–2240. https://doi.org/10.3382/ps.2012-02182

    Article  CAS  PubMed  Google Scholar 

  61. Bai K, Huang Q, Zhang J, He J, Zhang L, Wang T (2017) Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult Sci 96:74–82. https://doi.org/10.3382/ps/pew246

    Article  CAS  PubMed  Google Scholar 

  62. Gong L, Wang B, Mei X, Xu H, Qin Y, Li W et al (2018) Effects of three probiotic Bacillus on growth performance, digestive enzyme activities, antioxidative capacity, serum immunity, and biochemical parameters in broilers. Anim Sci J 89:1561–1571. https://doi.org/10.1111/asj.13089

    Article  CAS  PubMed  Google Scholar 

  63. Chen F, Chen J, Chen Q, Yang L, Yin J, Li Y et al (2021) Lactobacillus delbrueckii protected intestinal integrity, alleviated intestinal oxidative damage, and activated toll-like receptor–Bruton’s tyrosine kinase–nuclear factor erythroid 2-related factor 2 pathway in weaned piglets challenged with lipopolysaccharide. Antioxidants 10:468. https://doi.org/10.3390/antiox10030468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Varasteh S, Braber S, Akbari P, Garssen J, Fink-Gremmels J (2015) Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. PLoS ONE 10:e0138975. https://doi.org/10.1371/journal.pone.0138975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. He X, Lu Z, Ma B, Zhang L, Li J, Jiang Y et al (2018) Effects of chronic heat exposure on growth performance, intestinal epithelial histology, appetite-related hormones and genes expression in broilers. J Sci Food Agric 98:4471–4478. https://doi.org/10.1002/jsfa.8971

    Article  CAS  PubMed  Google Scholar 

  66. Santos RR, Awati A, Roubos-van den Hil PJ, van Kempen TATG, Tersteeg-Zijderveld MHG, Koolmees PA et al (2019) Effects of a feed additive blend on broilers challenged with heat stress. Avian Pathol 48:582–601. https://doi.org/10.1080/03079457.2019.1648750

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Jéssica C. das D. Ribeiro thanks the scholarship provided by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Luciana de P. Naves thanks the research productivity grant provided by CNPq (protocol number 312436/2020–3).

Author information

Authors and Affiliations

Authors

Contributions

JCDR reviewed the literature, conducted the field experiment, collaborated in laboratory analyzes, and helped with the writing and format of the manuscript. MMD and PMA collaborated on the experimental design definition, helped produce the non-commercial probiotics, conducted the molecular biology analyses, and reviewed the manuscript. JPFG, DCF, MIAM, PMMM, ACC and RTP collaborated in the field experiment and laboratory analyses. VRJ performed the statistical analysis. VACA collaborated on the experimental design definition, provided the laboratories and equipment for production non-commercial probiotics and realizing the molecular biology analyzes, obtained financial support, and reviewed the manuscript. LPN reviewed the literature, collaborated on the experimental design definition, provided equipment for the field experiment and laboratory analyses, obtained financial support, supervised this study, and helped with the writing format, and revision of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luciana de P. Naves.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

das D. Ribeiro, J.C., Drumond, M.M., Mancha-Agresti, P. et al. Diets Supplemented with Probiotics Improve the Performance of Broilers Exposed to Heat Stress from 15 Days of Age. Probiotics & Antimicro. Prot. 15, 1327–1341 (2023). https://doi.org/10.1007/s12602-022-09989-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-022-09989-3

Keywords

Navigation