Skip to main content
Log in

Goji Ferment Ameliorated Acetaminophen-Induced Liver Injury in vitro and in vivo

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

This study aimed to investigate the hepatoprotective effects of lyophilized powder of goji ferment (LPGF) against acetaminophen (APAP)-induced hepatic damage in Hep3B cells and in mice. Eleven strains of lactic acid bacteria (LAB) were selected and their hepatoprotection against APAP-induced cellular damage in Hep3B cell line was evaluated. Four strains of LAB, including BCRC11652 (Leuconostoc mesenteroides subsp. mesenteroides), BCRC14619 (Lactobacillus gasseri), KODA-1 (Pediococcus acidilactici), and KODA-2 (Limosilactobacillus fermentum), have hepatoprotective potential against APAP in vitro. Goji significantly stimulated the growth of individual and combined strains of LAB and the optimal fermented condition was the treatment of goji at 10% (w/w) for 24 h. The prepared lyophilized powder of goji ferment (LPGF) containing fifteen combinations of LAB strains was used to explore their hepatoprotection in vitro. LPGF containing all combinations of LAB strains, except for KODA-2, significantly restored APAP-reduced cell viability and improved APAP-increased cellular levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). In mice model, LPGF containing BCRC11652, BCRC14619, and KODA-2 was chosen to evaluate its hepatoprotection against APAP-induced liver injury. LPGF at diverse doses have a tendency but no significant improvement on APAP-reduced body weight gain and liver weight. LPGF significantly decreased APAP-increased serum ALT and AST levels in a dose-dependent manner. At the end of experiment, LPGF significantly and dose-dependently reversed APAP-reduced activities of GSH and antioxidant enzymes, including glutathione peroxidase, superoxide dismutase, and catalase in hepatic tissue. Overall, LPGF was demonstrated to exhibit hepatoprotection against APAP-induced liver injury in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

The authors declare that all data and materials support published claims and comply with field standards.

References

  1. Gloor Y, Schvartz D, F. Samer C (2019) Old problem, new solutions: biomarker discovery for acetaminophen liver toxicity. Expert Opin Drug Metab Toxicol 15:659–669. https://doi.org/10.1080/17425255.2019.1642323

    Article  CAS  PubMed  Google Scholar 

  2. Akakpo JY, Ramachandran A, Jaeschke H (2020) Novel strategies for the treatment of acetaminophen hepatotoxicity. Expert Opin Drug Metab Toxicol 16:1039–1050. https://doi.org/10.1080/17425255.2020.1817896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chao X, Wang H, Jaeschke H, Ding WX (2018) Role and mechanisms of autophagy in acetaminophen-induced liver injury. Liver Int 38:1363–1374. https://doi.org/10.1111/liv.13866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Herndon CM, Dankenbring DM (2014) Patient perception and knowledge of acetaminophen in a large family medicine service. J Pain Palliat Care Pharmacother 28:109–116. https://doi.org/10.3109/15360288.2014.908993

    Article  PubMed  Google Scholar 

  5. Altyar A, Kordi L, Skrepnek G (2015) Clinical and economic characteristics of emergency department visits due to acetaminophen toxicity in the USA. BMJ Open 5:e007368. https://doi.org/10.1136/bmjopen-2014-007368

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nourjah P, Ahmad SR, Karwoski C, Willy M (2006) Estimates of acetaminophen (Paracetomal)-associated overdoses in the United States. Pharmacoepidemiol Drug Saf 15:398–405. https://doi.org/10.1002/pds.1191

    Article  PubMed  Google Scholar 

  7. Manthripragada AD, Zhou EH, Budnitz DS, Lovegrove MC, Willy ME (2011) Characterization of acetaminophen overdose-related emergency department visits and hospitalizations in the United States. Pharmacoepidemiol Drug Saf 20:819–826. https://doi.org/10.1002/pds.2090

    Article  PubMed  Google Scholar 

  8. Budnitz DS, Lovegrove MC, Crosby AE (2011) Emergency department visits for overdoses of acetaminophen-containing products. Am J Prev Med 40:585–592. https://doi.org/10.1016/j.amepre.2011.02.026

    Article  PubMed  Google Scholar 

  9. Yu Y, Wu Y, Yan HZ, Xia ZR, Wen W, Liu DY, Wan LH (2021) Rosmarinic acid ameliorates acetaminophen-induced acute liver injury in mice via RACK1/TNF-α mediated antioxidant effect. Pharm Biol 59:1286–1293. https://doi.org/10.1080/13880209.2021.1974059

    Article  CAS  PubMed  Google Scholar 

  10. Chen C, Liu X, Qi S, C P Dias A, Yan J, Zhang X (2020) Hepatoprotective effect of Phellinus linteus mycelia polysaccharide (PL-N1) against acetaminophen-induced liver injury in mouse. Int J Biol Macromol 154:1276–1284. https://doi.org/10.1016/j.ijbiomac.2019.11.002

    Article  CAS  PubMed  Google Scholar 

  11. Sakeran MI, Zidan N, Rehman H, Aziz AT, Saggu S (2014) Abrogation by Trifolium alexandrinum root extract on hepatotoxicity induced by acetaminophen in rats. Redox Rep 19:26–33. https://doi.org/10.1179/1351000213Y.0000000068

    Article  PubMed  Google Scholar 

  12. Skenderidis P, Mitsagga C, Lampakis D, Petrotos K, Giavasis I (2019) The effect of encapsulated powder of goji berry (Lycium barbarum) on growth and survival of probiotic bacteria. Microorganisms 8:57. https://doi.org/10.3390/microorganisms8010057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tian X, Liang T, Liu Y, Ding G, Zhang F, Ma Z (2019) Extraction, structural characterization, and biological functions of Lycium barbarum polysaccharides: a review. Biomolecules 9:389. https://doi.org/10.3390/biom9090389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahn M, Park JS, Chae S, Kim S, Moon C, Hyun JW, Shin T (2014) Hepatoprotective effects of Lycium chinense Miller fruit and its constituent betaine in CCl4-induced hepatic damage in rats. Acta Histochem 116:1104–1112. https://doi.org/10.1016/j.acthis.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  15. Inbaraj BS, Lu H, Kao TH, Chen BH (2010) Simultaneous determination of phenolic acids and flavonoids in Lycium barbarum Linnaeus by HPLC-DAD-ESI-MS. J Pharm Biomed Anal 51:549–556. https://doi.org/10.1016/j.jpba.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  16. Inbaraj BS, Lu H, Hung CF, Wu WB, Lin CL, Chen BH (2008) Determination of carotenoids and their esters in fruits of Lycium barbarum Linnaeus by HPLC-DAD-APCI-MS. J Pharm Biomed Anal 47:812–818. https://doi.org/10.1016/j.jpba.2008.04.001

    Article  CAS  PubMed  Google Scholar 

  17. Gündüz E, Dursun R, Zengin Y, İçer M, Durgun HM, Kanıcı A, Kaplan İ, Alabalık U, Gürbüz H, Güloğlu C (2015) Lycium barbarum extract provides effective protection against paracetamol-induced acute hepatotoxicity in rats. Int J Clin Exp Med 8:7898–7905. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509291/pdf/ijcem0008-7898.pdf. Accessed 25 Feb 2022

  18. Kechagia M, Basoulis D, Konstantopoulou S, Dimitriadi D, Gyftopoulou K, Skarmoutsou N, Fakiri EM (2013) Health benefits of probiotics: a review. ISRN Nutr 2013:481651. https://doi.org/10.5402/2013/481651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li L, Wang L, Fan W, Jiang Y, Zhang C, Li J, Peng W, Wu C (2020) The application of fermentation technology in traditional Chinese medicine: a review. Am J Chin Med 48:899–921. https://doi.org/10.1142/S0192415X20500433

    Article  CAS  PubMed  Google Scholar 

  20. Manov I, Hirsh M, Iancu TC (2002) Acetaminophen hepatotoxicity and mechanisms of its protection by N-acetylcysteine: a study of Hep3B cells. Exp Toxicol Pathol 53:489–500. https://doi.org/10.1078/0940-2993-00215

    Article  CAS  PubMed  Google Scholar 

  21. Chuang CH, Tsai CC, Lin ES, Huang CS, Lin YY, Lan CC, Huang CC (2016) Heat-killed Lactobacillus salivarius and Lactobacillus johnsonii reduce liver injury induced by alcohol in vitro and in vivo. Molecules 21:1456. https://doi.org/10.3390/molecules21111456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee JY, Kim H, Jeong Y, Kang CH (2021) Lactic acid bacteria exert a hepatoprotective effect against ethanol-induced liver injury in HepG2 cells. Microorganisms 9:1844. https://doi.org/10.3390/microorganisms9091844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gan Y, Tong J, Zhou X, Long X, Pan Y, Liu W, Zhao X (2021) Hepatoprotective effect of Lactobacillus plantarum HFY09 on ethanol-induced liver injury in mice. Front Nutr 8:684588. https://doi.org/10.3389/fnut.2021.684588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jantararussamee C, Rodniem S, Taweechotipatr M, Showpittapornchai U, Pradidarcheep W (2021) Hepatoprotective effect of probiotic lactic acid bacteria on thioacetamide-induced liver fibrosis in rats. Probiotics Antimicrob Proteins 13:40–50. https://doi.org/10.1007/s12602-020-09663-6

    Article  CAS  PubMed  Google Scholar 

  25. Nam Y, Kim JH, Konkit M, Kim W (2019) Hepatoprotective effects of Lactococcus chungangensis CAU 1447 in alcoholic liver disease. J Dairy Sci 102:10737–10747. https://doi.org/10.3168/jds.2019-16891

    Article  CAS  PubMed  Google Scholar 

  26. Xu RH, Xiu L, Zhang YL, Du RP, Wang X (2019) Probiotic and hepatoprotective activity of lactobacillus isolated from Mongolian camel milk products. Benef Microbes 10:699–710. https://doi.org/10.3920/BM2018.0131

    Article  CAS  PubMed  Google Scholar 

  27. Han SY, Huh CS, Ahn YT, Lim KS, Baek YJ, Kim DH (2005) Hepatoprotective effect of lactic acid bacteria, inhibitors of beta-glucuronidase production against intestinal microflora. Arch Pharm Res 28:325–329. https://doi.org/10.1007/BF02977800

    Article  CAS  PubMed  Google Scholar 

  28. Zhou F, Jiang X, Wang T, Zhang B, Zhao H (2018) Lyciumbarbarum pPolysaccharide (LBP): a novel prebiotics candidate for Bifidobacterium and Lactobacillus. Front Microbiol 9:1034. https://doi.org/10.3389/fmicb.2018.01034

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lin FM, Chiu CH, Pan TM (2004) Fermentation of a milk-soymilk and Lycium chinense Miller mixture using a new isolate of Lactobacillus paracasei subsp. paracasei NTU101 and Bifidobacterium longum. J Ind Microbiol Biotechnol 31:559–564. https://doi.org/10.1007/s10295-004-0184-z

    Article  CAS  PubMed  Google Scholar 

  30. Prescott LF (1983) Paracetamol overdosage. Pharmacological considerations and clinical management. Drugs 25:290–314. https://doi.org/10.2165/00003495-198325030-00002

    Article  CAS  PubMed  Google Scholar 

  31. McGovern AJ, Vitkovitsky IV, Jones DL, Mullins ME (2015) Can AST/ALT ratio indicate recovery after acute paracetamol poisoning? Clin Toxicol (Phila) 53:164–167. https://doi.org/10.3109/15563650.2015.1006399

    Article  CAS  PubMed  Google Scholar 

  32. Dahlin DC, Miwa GT, Lu AY, Nelson SD (1984) N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci USA 81:1327–1331. https://doi.org/10.1073/pnas.81.5.1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Albano E, Rundgren M, Harvison PJ, Nelson SD, Moldéus P (1985) Mechanisms of N-acetyl-p-benzoquinone imine cytotoxicity. Mol Pharmacol 28:306–311

    CAS  PubMed  Google Scholar 

  34. Mitchell JR, Jollow DJ, Potter WZ, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. IV Protective role of glutathione. J Pharmacol Exp Ther 187:211–217

    CAS  PubMed  Google Scholar 

  35. Klein-Schwartz W, Doyon S (2011) Intravenous acetylcysteine for the treatment of acetaminophen overdose. Expert Opin Pharmacother 12:119–130. https://doi.org/10.1517/14656566.2011.537261

    Article  CAS  PubMed  Google Scholar 

  36. Khodayar MJ, Kalantari H, Khorsandi L, Rashno M, Zeidooni L (2018) Betaine protects mice against acetaminophen hepatotoxicity possibly via mitochondrial complex II and glutathione availability. Biomed Pharmacother 103:1436–1445. https://doi.org/10.1016/j.biopha.2018.04.154

    Article  CAS  PubMed  Google Scholar 

  37. Jaeschke H, McGill MR, Ramachandran A (2012) Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 44:88–106. https://doi.org/10.3109/03602532.2011.602688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alipour M, Buonocore C, Omri A, Szabo M, Pucaj K, Suntres ZE (2013) Therapeutic effect of liposomal-N-acetylcysteine against acetaminophen-induced hepatotoxicity. J Drug Target 21:466–473. https://doi.org/10.3109/1061186X.2013.765443

    Article  CAS  PubMed  Google Scholar 

  39. Kim SK, Kim YC (2002) Attenuation of bacterial lipopolysaccharide-induced hepatotoxicity by betaine or taurine in rats. Food Chem Toxicol 40:545–549. https://doi.org/10.1016/s0278-6915(01)00102-8

    Article  CAS  PubMed  Google Scholar 

  40. Kim SK, Seo JM, Chae YR, Jung YS, Park JH, Kim YC (2009) Alleviation of dimethylnitrosamine-induced liver injury and fibrosis by betaine supplementation in rats. Chem Biol Interact 177:204–211. https://doi.org/10.1016/j.cbi.2008.09.021

    Article  CAS  PubMed  Google Scholar 

  41. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661. https://doi.org/10.1096/fj.07-9574LSF

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by E10700007131-335 from the Small Business Innovation Research (SBIR), Ministry of Economic Affairs, Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, CH Chuang and CH Chen; Methodology, CM Yang, MY Chien, and LY Wang; Writing-original draft preparation, CM Yang, MY Chien, and LY Wang; Writing-review and editing, CH Chuang and CH Chen.

Corresponding authors

Correspondence to Cheng-Hung Chuang or Chao-Hsiang Chen.

Ethics declarations

Ethics Approval and Consent to Participate

This study protocol was approved by the Animal Research Committee of HungKuang University, Taichung, Taiwan and the committee’s reference number was HK-P-10701.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CM., Chien, MY., Wang, LY. et al. Goji Ferment Ameliorated Acetaminophen-Induced Liver Injury in vitro and in vivo. Probiotics & Antimicro. Prot. 15, 1102–1112 (2023). https://doi.org/10.1007/s12602-022-09956-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-022-09956-y

Keywords

Navigation