Skip to main content
Log in

Probiotic Lactobacilli Administration Induces Changes in the Fecal Microbiota of Preweaned Dairy Calves

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Early microbial colonization is a determinant factor in animal health, and probiotic administration has been demonstrated to modulate intestinal microbiota and promote health in dairy calves. The objective of this study was to evaluate changes in calves’ fecal microbiota after the administration of two probiotic lactobacilli strains that had previously exhibited beneficial effects in calves’ health in relation to neonatal calf diarrhea. An in vivo assay was performed with 30 newborn male Holstein calves that were divided into three groups. Two groups were orally administered with two different lactobacilli strains (Lactobacillus johnsonii TP1.6 or Limosilactobacillus reuteri TP1.3B), and the third was the control group. Calves (5 to 9 days old) were administered with freeze-dried bacteria once a day for 10 consecutive days. Feces samples were taken before the first administration (day 0) and then again on days 10 and 21, and the V4 region of the bacterial 16S ribosomal gene was sequenced with an Illumina MiSeq 250 paired-end platform. The administration of both strains significantly affected the total bacterial community composition, and the effect lasted for 11 days after the last dose. In particular, amplicon sequence variants related to Bifidobacterium and Akkermansia genera were significantly higher in both treated groups. Therefore, modulation of the intestinal microbiota is a potential mechanism of action behind the beneficial effects of these probiotic strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The sequencing data that support the findings of this study are available in the NCBI Sequence Read Archive under Accession Number PRJNA637605 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA637605, https://www.ncbi.nlm.nih.gov/bioproject/PRJNA637605).

References

  1. Uetake K (2013) Newborn calf welfare: a review focusing on mortality rates. Anim Sci J 84:101–105. https://doi.org/10.1111/asj.12019

    Article  PubMed  Google Scholar 

  2. Urie NJ, Lombard JE, Shivley CB et al (2018) Preweaned heifer management on US dairy operations: part V. Factors associated with morbidity and mortality in preweaned dairy heifer calves. J Dairy Sci 101:9229–9244. https://doi.org/10.3168/JDS.2017-14019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schild CO, Caffarena RD, Gil A et al (2020) A survey of management practices that influence calf welfare and an estimation of the annual calf mortality risk in pastured dairy herds in Uruguay. J Dairy Sci 103:9418–9429. https://doi.org/10.3168/jds.2020-18177

    Article  CAS  PubMed  Google Scholar 

  4. Caffarena RD, Casaux ML, Schild CO et al (2021) Causes of neonatal calf diarrhea and mortality in pasture-based dairy herds in Uruguay: a farm-matched case-control study. Braz J Microbiol 52:977–988. https://doi.org/10.1007/S42770-021-00440-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taschuk R, Griebel PPJ (2012) Commensal microbiome effects on mucosal immune system development in the ruminant gastrointestinal tract. Anim Health Res Rev 1:129–141. https://doi.org/10.1017/S1466252312000096

    Article  Google Scholar 

  6. Bischoff SC (2011) “Gut health”: a new objective in medicine? BMC Med 9:24. https://doi.org/10.1186/1741-7015-9-24

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273. https://doi.org/10.1126/science.1223490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Malmuthuge N, Guan LL (2017) Understanding the gut microbiome of dairy calves: opportunities to improve early-life gut health. J Dairy Sci 100:5996–6005. https://doi.org/10.3168/jds.2016-12239

    Article  CAS  PubMed  Google Scholar 

  9. Oikonomou G, Gustavo A, Teixeira V et al (2013) Fecal microbial diversity in pre-weaned dairy calves as described by pyrosequencing of metagenomic 16S rDNA. Associations of Faecalibacterium species with health and growth. PLoS One 8:e63157. https://doi.org/10.1371/journal.pone.0063157

  10. Ma T, Villot C, Renaud D et al (2020) Linking perturbations to temporal changes in diversity, stability, and compositions of neonatal calf gut microbiota: prediction of diarrhea. ISME J 14:2223–2235. https://doi.org/10.1038/s41396-020-0678-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Amin N, Seifert J (2021) Dynamic progression of the calf’s microbiome and its influence on host health. Comput Struct Biotechnol J 19:989–1001. https://doi.org/10.1016/j.csbj.2021.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Malmuthuge N, Liang G, Griebel PJ, Guan LL (2019) Taxonomic and functional compositions of the small intestinal microbiome in neonatal calves provide a framework for understanding early life gut health. Appl Environ Microbiol 85:1–19. https://doi.org/10.1128/AEM.02534-18

    Article  Google Scholar 

  13. Smith G (2015) Antimicrobial decision making for enteric diseases of cattle. Vet Clin North Am - Food Anim Pract 31:47–60. https://doi.org/10.1016/j.cvfa.2014.11.004

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lusk JL, Norwood FB, Pruitt JR (2006) Consumer demand for a ban on antibiotic drug use in pork production. Am J Agric Econ 88:1015–1033. https://doi.org/10.1111/J.1467-8276.2006.00913.X

    Article  Google Scholar 

  15. Gaggìa F, Mattarelli P, Biavati B (2010) Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 141:S15–S28. https://doi.org/10.1016/j.ijfoodmicro.2010.02.031

    Article  PubMed  Google Scholar 

  16. Uyeno Y, Shigemori S, Shimosato T (2015) Effect of probiotics/prebiotics on cattle health and productivity. Microbes Environ 30:126–132. https://doi.org/10.1264/jsme2.me14176

    Article  PubMed  PubMed Central  Google Scholar 

  17. Musa HH, Wu SL, Zhu CH et al (2009) The potential benefits of probiotics in animal production and health. J Anim Vet Adv 8:313–321

    Google Scholar 

  18. Jatkauskas J, Vrotniakienė V (2014) Effects of encapsulated probiotic Enterococcus faecium strain on diarrhoea patterns and performance of early weaned calves. Vet Med (Praha) 67:494–503

    Google Scholar 

  19. Frizzo LS, Zbrun MV, Soto LP, Signorini ML (2011) Effects of probiotics on growth performance in young calves: a meta-analysis of randomized controlled trials. Anim Feed Sci Technol 169:147–156. https://doi.org/10.1016/j.anifeedsci.2011.06.009

    Article  CAS  Google Scholar 

  20. Signorini ML, Soto LP, Zbrun MV et al (2012) Impact of probiotic administration on the health and fecal microbiota of young calves: a meta-analysis of randomized controlled trials of lactic acid bacteria. Res Vet Sci 93:250–258. https://doi.org/10.1016/j.rvsc.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  21. von Buenau R, Jaekel L, Schubotz E et al (2005) Escherichia coli strain Nissle 1917: significant reduction of neonatal calf diarrhea. J Dairy Sci 88:317–323. https://doi.org/10.3168/jds.S0022-0302(05)72690-4

    Article  Google Scholar 

  22. Renaud D, Kelton D, Weese J et al (2019) Evaluation of a multispecies probiotic as a supportive treatment for diarrhea in dairy calves: a randomized clinical trial. J Dairy Sci Sci 102:4498–4505. https://doi.org/10.3168/jds.2018-15793

    Article  CAS  Google Scholar 

  23. Kim MK, Lee HG, Park JA et al (2011) Effect of feeding direct-fed microbial as an alternative to antibiotics for the prophylaxis of calf diarrhea in holstein calves. Asian-Australasian J Anim Sci 24:643–649. https://doi.org/10.5713/ajas.2011.10322

    Article  CAS  Google Scholar 

  24. Cangiano LR, Yohe TT, Steele MA, Renaud DL (2020) Invited review: strategic use of microbial-based probiotics and prebiotics in dairy calf rearing. Appl Anim Sci 36:630–651. https://doi.org/10.15232/aas.2020-02049

  25. He ZX, Ferlisi B, Eckert E et al (2017) Supplementing a yeast probiotic to pre-weaning Holstein calves: Feed intake, growth and fecal biomarkers of gut health. Anim Feed Sci Technol 226:81–87. https://doi.org/10.1016/j.anifeedsci.2017.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dunne C, Murphy L, Flynn S et al (1999) Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. In: Konings WN, Kuipers OP, In ’t Veld JH (eds) Lactic acid bacteria: genetics, metabolism and applications. Springer, Dordrecht, pp 279–292

  27. Chapman CMC, Gibson GR, Rowland I (2012) In vitro evaluation of single- and multi-strain probiotics: Inter-species inhibition between probiotic strains, and inhibition of pathogens. Anaerobe 18:405–413. https://doi.org/10.1016/j.anaerobe.2012.05.004

    Article  CAS  PubMed  Google Scholar 

  28. Ma T, Suzuki Y, Guan LL (2018) Dissect the mode of action of probiotics in affecting host-microbial interactions and immunity in food producing animals. Vet Immunol Immunopathol 205:35–48. https://doi.org/10.1016/j.vetimm.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  29. Fernández S, Fraga M, Silveyra E et al (2018) Probiotic properties of native Lactobacillus spp. strains for dairy calves. Benef Microbes 9:613–624. https://doi.org/10.3920/BM2017.0131

    Article  PubMed  Google Scholar 

  30. Fernández S, Fraga M, Castells M et al (2020) Effect of the administration of Lactobacillus spp. strains on neonatal diarrhoea, immune parameters and pathogen abundance in pre-weaned calves. Benef Microbes 11:477–488. https://doi.org/10.3920/BM2019.0167

  31. O’Toole PW, Cooney JC (2008) Probiotic bacteria influence the composition and function of the intestinal microbiota. Interdiscip Perspect Infect Dis 2008:175285. https://doi.org/10.1155/2008/175285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morrill KM, Polo J, Lago A et al (2013) Estimate of serum immunoglobulin G concentration using refractometry with or without caprylic acid fractionation. J Dairy Sci 96:4535–4541. https://doi.org/10.3168/jds.2012-5843

    Article  CAS  PubMed  Google Scholar 

  33. Callahan B, McMurdie P, Rosen M et al (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Callahan B, Sankaran K, Fukuyama J et al (2016) Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Research 5:1492. https://doi.org/10.12688/f1000research.8986.2

  35. Wright ES (2015) DECIPHER: Harnessing local sequence context to improve protein multiple sequence alignment. BMC Bioinformatics 16:1–14. https://doi.org/10.1186/s12859-015-0749-z

    Article  CAS  Google Scholar 

  36. Schliep KP (2011) phangorn: phylogenetic analysis in R. Bioinformatics 27:592–593. https://doi.org/10.1093/bioinformatics/btq706

    Article  CAS  PubMed  Google Scholar 

  37. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oksanen J, Blanchet F, Friendly M et al (2019) vegan: community ecology package. R package version 2.5–4.

  39. Wilson RA, Zolnai A, Rudas P, Frenyo LV (1996) T-cell subsets in blood and lymphoid tissues obtained from fetal calves, maturing calve, and adult bovine. Vet Immunol Immunopathol 53:49–60. https://doi.org/10.1016/0165-2427(95)05543-6

    Article  CAS  PubMed  Google Scholar 

  40. Borchers AT, Selmi C, Meyers FJ et al (2009) Probiotics and immunity. J Gastroenterol 44:26–46. https://doi.org/10.1007/s00535-008-2296-0

    Article  PubMed  Google Scholar 

  41. Meale SJ, Chaucheyras-Durand F, Berends H et al (2017) From pre- to postweaning: transformation of the young calf’s gastrointestinal tract. J Dairy Sci 100:5984–5995. https://doi.org/10.3168/jds.2016-12474

    Article  CAS  PubMed  Google Scholar 

  42. Meale SJ, Li S, Azevedo P et al (2016) Development of ruminal and fecal microbiomes are affected by weaning but not weaning strategy in dairy calves. Front Microbiol 7:1–16. https://doi.org/10.3389/fmicb.2016.00582

    Article  Google Scholar 

  43. Alipour MJ, Jalanka J, Pessa-Morikawa T et al (2018) The composition of the perinatal intestinal microbiota in cattle. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-28733-y

    Article  CAS  Google Scholar 

  44. Castro JJ, Gomez A, White B et al (2016) Changes in the intestinal bacterial community, short-chain fatty acid profile, and intestinal development of preweaned Holstein calves. 2. Effects of gastrointestinal site and age. J Dairy Sci 99:9703–9715. https://doi.org/10.3168/jds.2016-11007

    Article  CAS  PubMed  Google Scholar 

  45. Fomenky BE, Do DN, Talbot G et al (2018) Direct-fed microbial supplementation influences the bacteria community composition of the gastrointestinal tract of pre- and post-weaned calves. Sci Rep 8:1–21. https://doi.org/10.1038/s41598-018-32375-5

    Article  CAS  Google Scholar 

  46. Baldwin VIRL, McLeod KR, Klotz JL, Heitmann RN (2004) Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant. J Dairy Sci 87:E55–E65. https://doi.org/10.3168/jds.s0022-0302(04)70061-2

    Article  Google Scholar 

  47. Malmuthuge N, Griebel PJ, Guan LL (2015) The gut microbiome and its potential role in the development and function of newborn calf gastrointestinal tract. Front Vet Sci 2:1–10. https://doi.org/10.3389/fvets.2015.00036

    Article  Google Scholar 

  48. Wang SX, Zhang J, Li SL et al (2017) Influence of dairy by-product waste milk on the microbiomes of different gastrointestinal tract components in pre-weaned dairy calves. Sci Rep 7:1–13. https://doi.org/10.1038/srep42689

    Article  PubMed  PubMed Central  Google Scholar 

  49. Guan Y, Yang H, Han S et al (2017) Comparison of the gut microbiota composition between wild and captive sika deer (Cervus nippon hortulorum) from feces by high-throughput sequencing. AMB Express 7:1–13. https://doi.org/10.1186/s13568-017-0517-8

    Article  CAS  Google Scholar 

  50. Wang Y, Zhang H, LinZhu LZ et al (2018) Dynamic distribution of gut microbiota in goats at different ages and health states. Front Microbiol 9:2509. https://doi.org/10.3389/fmicb.2018.02509

    Article  PubMed  PubMed Central  Google Scholar 

  51. He J, Hai L, Orgoldol K et al (2019) High-throughput sequencing reveals the gut microbiome of the bactrian camel in different ages. Curr Microbiol 76:810–817. https://doi.org/10.1007/s00284-019-01689-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Du R, Jiao S, Dai Y et al (2018) Probiotic Bacillus amyloliquefaciens C-1 improves growth performance, stimulates GH/IGF-1, and regulates the gut microbiota of growth-retarded beef calves. Front Microbiol 9:1–12. https://doi.org/10.3389/fmicb.2018.02006

    Article  Google Scholar 

  53. Gerritsen J, Smidt H, Rijkers GT, de Vos WM (2011) Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr 6:209–240. https://doi.org/10.1007/s12263-011-0229-7

    Article  PubMed  PubMed Central  Google Scholar 

  54. Leahy SC, Higgins DG, Fitzgerald GF, Van Sinderen D (2005) Getting better with bifidobacteria. J Appl Microbiol 98:1303–1315. https://doi.org/10.1111/j.1365-2672.2005.02600.x

    Article  CAS  PubMed  Google Scholar 

  55. Vlasova AN, Kandasamy S, Chattha KS et al (2016) Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species. Vet Immunol Immunopathol 172:72–84. https://doi.org/10.1016/j.vetimm.2016.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sarkar A, Mandal S (2016) Bifidobacteria—Insight into clinical outcomes and mechanisms of its probiotic action. Microbiol Res 192:159–171. https://doi.org/10.1016/j.micres.2016.07.001

    Article  PubMed  Google Scholar 

  57. Malmuthuge N, Chen Y, Liang G et al (2015) Heat-treated colostrum feeding promotes beneficial bacteria colonization in the small intestine of neonatal calves. J Dairy Sci 98:8044–8053. https://doi.org/10.3168/jds.2015-9607

    Article  CAS  PubMed  Google Scholar 

  58. Song Y, Malmuthuge N, Li F, Guan LL (2018) Colostrum feeding shapes the hindgut microbiota of dairy calves during the first 12 h of life. FEMS Microbiol Ecol 95:fiy203. https://doi.org/10.1093/femsec/fiy203

  59. Gomez DE, Arroyo LG, Costa MC et al (2017) Characterization of the fecal bacterial microbiota of healthy and diarrheic dairy calves. J Vet Intern Med 31:928–939. https://doi.org/10.1111/jvim.14695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shin J, Noh J-R, Chang D-H et al (2019) Elucidation of Akkermansia muciniphila probiotic traits driven by mucin depletion. Front Microbiol 10:1137. https://doi.org/10.3389/fmicb.2019.01137

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cani PD, de Vos WM (2017) Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front Microbiol 8:1765. https://doi.org/10.3389/fmicb.2017.01765

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhai Q, Feng S, Arjan N, Chen W (2018) A next generation probiotic, Akkermansia muciniphila. Crit Rev Food Sci Nutr 59:3227–3236. https://doi.org/10.1080/10408398.2018.1517725

    Article  CAS  PubMed  Google Scholar 

  63. Belzer C, De Vos WM (2012) Microbes inside-from diversity to function: the case of Akkermansia. ISME J 6:1449–1458. https://doi.org/10.1038/ismej.2012.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Derakhshani H, De Buck J, Mortier R et al (2016) The features of fecal and ileal mucosa-associated microbiota in dairy calves during early infection with Mycobacterium avium subspecies paratuberculosis. Front Microbiol 7:426. https://doi.org/10.3389/FMICB.2016.00426

    Article  PubMed  PubMed Central  Google Scholar 

  65. Drackley JK (2008) Calf nutrition from birth to breeding. Vet Clin North Am - Food Anim Pract 24:55–86. https://doi.org/10.1016/j.cvfa.2008.01.001

    Article  PubMed  Google Scholar 

  66. Khan MA, Weary DM, von Keyserlingk MAG (2011) Invited review: effects of milk ration on solid feed intake, weaning, and performance in dairy heifers. J Dairy Sci 94:1071–1081. https://doi.org/10.3168/jds.2010-3733

    Article  CAS  PubMed  Google Scholar 

  67. Kertz AF, Hill TM, Quigley JD et al (2017) A 100-year review: calf nutrition and management. J Dairy Sci 100:10151–10172. https://doi.org/10.3168/jds.2017-13062

    Article  CAS  PubMed  Google Scholar 

  68. Quigley JD, Wolfe TA, Elsasser TH (2010) Effects of additional milk replacer feeding on calf health, growth, and selected blood metabolites in calves. J Dairy Sci 89:207–216. https://doi.org/10.3168/jds.s0022-0302(06)72085-9

    Article  Google Scholar 

  69. Daneshvar D, Khorvash M, Ghasemi E, Mahdavi AH (2017) Combination effects of milk feeding methods and starter crude protein concentration: evaluation on performance and health of Holstein male calves. Anim Feed Sci Technol 23:1–12. https://doi.org/10.1016/j.anifeedsci.2016.10.025

    Article  CAS  Google Scholar 

  70. de Paula MR, Oltramari CE, Silva JT et al (2017) Intensive liquid feeding of dairy calves with a medium crude protein milk replacer: effects on performance, rumen, and blood parameters. J Dairy Sci 100:4448–4456. https://doi.org/10.3168/jds.2016-10859

    Article  CAS  PubMed  Google Scholar 

  71. Khan MA, Lee HJ, Lee WS et al (2007) Structural growth, rumen development, and metabolic and immune responses of Holstein male calves fed milk through step-down and conventional methods. J Dairy Sci 90:3376–3387. https://doi.org/10.3168/jds.2007-0104

    Article  CAS  PubMed  Google Scholar 

  72. Omidi-Mirzaei H, Khorvash M, Ghorbani GR et al (2015) Effects of the step-up/step-down and step-down milk feeding procedures on the performance, structural growth, and blood metabolites of Holstein dairy calves. J Dairy Sci 98:7975–7981. https://doi.org/10.3168/jds.2014-9260

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Instituto Nacional de Investigación Agropecuaria (INIA, Uruguay, grant number: FPTA 325) and by a student grant from Agencia Nacional de Investigación e Innovación (ANII, Uruguay, grant number: POS_NAC_2013_1_11186).

Author information

Authors and Affiliations

Authors

Contributions

Sofía Fernández-Ciganda: conceptualization, methodology, laboratory work, formal analysis, and writing of the original draft. Martín Fraga: academic and technical input and proofreading of the manuscript. Pablo Zunino: academic and technical input, supervision, and project administration.

Corresponding author

Correspondence to Sofía Fernández-Ciganda.

Ethics declarations

Ethics Approval

Animal handling was conducted at the Instituto Nacional de Investigación Agropecuaria under the constant supervision of veterinarians and with the approval of the Ethics Committee on the Use of Animals of the Instituto de Investigaciones Biológicas Clemente Estable (CEUA-IIBCE, reference number 001/02/2016, date: 5th of February of 2016).

Conflict of Interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 868 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Ciganda, S., Fraga, M. & Zunino, P. Probiotic Lactobacilli Administration Induces Changes in the Fecal Microbiota of Preweaned Dairy Calves. Probiotics & Antimicro. Prot. 14, 804–815 (2022). https://doi.org/10.1007/s12602-021-09834-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09834-z

Keywords

Navigation