Skip to main content

Advertisement

Log in

Screening of Lactic Acid Bacterial Strains with Antiviral Activity Against Porcine Epidemic Diarrhea

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Newly emerging and re-emerging viral infectious diseases cause significant economic losses in swine production. Efficacious vaccines have not yet been developed for several major swine infectious diseases, including porcine epidemic diarrhea virus (PEDV). We used the PEDV-infected Vero cell model to screen lactic acid bacteria (LAB) strains with antiviral activity. Sixty LAB strains were isolated from the feces of nursing piglets. After the elimination of LAB strains with high cytotoxicity to Vero cells, the protective effects of the remaining 6 strains against PEDV infection were determined. Vero cells pretreated with the intracellular extracts or cell wall fractions of YM22 and YM33 strains for 24 h before infection with PEDV showed significantly higher cell viabilities and lower mRNA expression of PEDV nucleocapsid (PEDV-N) than the unpretreated cells, indicating that the intracellular extracts and cell wall fractions of YM22 and YM33 possessed prophylactic effects on Vero cells against PEDV infection. PEDV-infection significantly increased the mRNA expression of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-8 (IL-8) in Vero cells. However, pretreatment of Vero cells with the cell wall fractions of YM22 and YM33 decreased the mRNA expression of TNF-α and IL-8, which could be a mechanism associated with the protective effects of YM22 and YM33 against PEDV. Based on the biochemical characteristics and phylogenetic analyses, YM22 and YM33 were identified as Ligilactobacillus agilis (basonym: Lactobacillus agilis) and Ligilactobacillus salivarius (basonym: Lactobacillus salivarius), respectively. These findings suggest that L. agilis YM22 and L. salivarius YM33 could provide some levels of protective effects against PEDV infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Meng XJ (2012) Emerging and re-emerging swine viruses. Transbound Emerg Dis 59(Suppl 1):85–102. https://doi.org/10.1111/j.1865-1682.2011.01291.x

    Article  PubMed  Google Scholar 

  2. Wang Q, Vlasova AN, Kenney SP, Saif LJ (2019) Emerging and re-emerging coronaviruses in pigs. Curr Opin Virol 34:39–49. https://doi.org/10.1016/j.coviro.2018.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Galindo I, Alonso C (2017) African swine fever virus: a review. Viruses 9:103. https://doi.org/10.3390/v9050103

    Article  CAS  PubMed Central  Google Scholar 

  4. Lenschow DJ, Giannakopoulos NV, Gunn LJ et al (2005) Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J Virol 79:13974–13983. https://doi.org/10.1128/jvi.79.22.13974-13983.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pichlmair A, e Sousa CR (2007) Innate recognition of viruses. Immunity 27:370–383. https://doi.org/10.1016/j.immuni.2007.08.012

    Article  CAS  PubMed  Google Scholar 

  6. Sadler AJ, Williams BRG (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8:559–568. https://doi.org/10.1038/nri2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schoggins JW, Rice CM (2011) Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1:519–525. https://doi.org/10.1016/j.coviro.2011.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. García-Sastre A (2017) Ten strategies of interferon evasion by viruses. Cell Host Microbe 22:176–184. https://doi.org/10.1016/j.chom.2017.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hao Z, Fu F, Cao L et al (2019) Tumor suppressor p53 inhibits porcine epidemic diarrhea virus infection via interferon-mediated antiviral immunity. Mol Immunol 108:68–74. https://doi.org/10.1016/j.molimm.2019.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koonpaew S, Teeravechyan S, Frantz PN et al (2019) PEDV and PDCoV pathogenesis: the interplay between host innate immune responses and porcine enteric coronaviruses. Front Vet Sci 6:34. https://doi.org/10.3389/fvets.2019.00034

    Article  PubMed  PubMed Central  Google Scholar 

  11. Arena MP, Capozzi V, Russo P et al (2018) Immunobiosis and probiosis: antimicrobial activity of lactic acid bacteria with a focus on their antiviral and antifungal properties. Appl Microbiol Biotechnol 102:9949–9958. https://doi.org/10.1007/s00253-018-9403-9

    Article  CAS  PubMed  Google Scholar 

  12. Eguchi K, Fujitani N, Nakagawa H, Miyazaki T (2019) Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055. Sci Rep 9:4812. https://doi.org/10.1038/s41598-019-39602-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kassaa Al I (2016) New insights on antiviral probiotics. Springer Nature, Cham, Switzerland

  14. Ahn YT, Lim KL, Ryu JC et al (2002) Characterization of Lactobacillus acidophilus isolated from piglets and chicken. Asian-Aust J Anim Sci 15:1790–1797. https://doi.org/10.5713/ajas.2002.1790

    Article  Google Scholar 

  15. Vinderola CG, Prosello W, Ghiberto D, Reinheimer JA (2000) Viability of probiotic (Bifidobacterium, Lactobacillus acidophilus and Lactobacillus casei) and nonprobiotic microflora in Argentinian Fresco cheese. J Dairy Sci 83:1905–1911. https://doi.org/10.3168/jds.s0022-0302(00)75065-x

    Article  CAS  PubMed  Google Scholar 

  16. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  17. Chang-Liao WP, Lee A, Chiu YH et al (2020) Isolation of a Leuconostoc mesenteroides strain with anti-porcine epidemic diarrhea virus activities from kefir grains. Front Microbiol 11:1578. https://doi.org/10.3389/fmicb.2020.01578

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chang YC, Kao CF, Chang CY et al (2017) Evaluation and comparison of the pathogenicity and host immune responses induced by a G2b Taiwan porcine epidemic diarrhea virus (strain Pintung 52) and its highly cell-culture passaged strain in conventional 5-week-old pigs. Viruses 9:121. https://doi.org/10.3390/v9050121

    Article  CAS  PubMed Central  Google Scholar 

  19. Hsueh HY, Yueh PY, Yu B et al (2010) Expression of Lactobacillus reuteri Pg4 collagen-binding protein gene in Lactobacillus casei ATCC 393 increases its adhesion ability to Caco-2 cells. J Agric Food Chem 58:12182–12191. https://doi.org/10.1021/jf1035756

    Article  CAS  PubMed  Google Scholar 

  20. Logan RP, Robins A, Turner GA et al (1998) A novel flow cytometric assay for quantitating adherence of Helicobacter pylori to gastric epithelial cells. J Immunol Methods 213:19–30. https://doi.org/10.1016/S0022-1759(98)00018-0

    Article  CAS  PubMed  Google Scholar 

  21. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1990) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    Article  Google Scholar 

  22. Naser SM, Thompson FL, Hoste B et al (2005) Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151:2141–2150. https://doi.org/10.1099/mic.0.27840-0

    Article  CAS  PubMed  Google Scholar 

  23. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  24. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358. https://doi.org/10.1093/bioinformatics/12.4.357

    Article  CAS  PubMed  Google Scholar 

  26. Vos P, Garrity P, Jones D et al (2009) Bergey's manual of systematic bacteriology: volume 3: the firmicutes, 2nd ed. Springer-Verlag, New York

  27. Simmons JD, Wollish AC, Heise MT (2010) A determinant of Sindbis virus neurovirulence enables efficient disruption of Jak/STAT signaling. J Virol 84:11429–11439. https://doi.org/10.1128/jvi.00577-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mousavi E, Makvandi M, Teimoori A et al (2018) Antiviral effects of Lactobacillus crispatus against HSV-2 in mammalian cell lines. J Chin Med Assoc 81:262–267. https://doi.org/10.1016/j.jcma.2017.07.010

    Article  PubMed  Google Scholar 

  29. Biliavska L, Pankivska Y, Povnitsa O, Zagorodnya S (2019) Antiviral activity of exopolysaccharides produced by lactic acid bacteria of the genera Pediococcus, Leuconostoc and Lactobacillus against human adenovirus type 5. Medicina 55:519. https://doi.org/10.3390/medicina55090519

    Article  PubMed Central  Google Scholar 

  30. Kassaa Al I, Hober D, Hamze M et al (2014) Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicro Proteins 6:177–185. https://doi.org/10.1007/s12602-014-9162-6

    Article  CAS  Google Scholar 

  31. Villena J, Vizoso-Pinto MG, Kitazawa H (2016) Intestinal innate antiviral immunity and immunobiotics: beneficial effects against rotavirus infection. Front Immunol 7:563. https://doi.org/10.3389/fimmu.2016.00563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zelaya H, Tada A, Vizoso-Pinto MG et al (2015) Nasal priming with immunobiotic Lactobacillus rhamnosus modulates inflammation–coagulation interactions and reduces influenza virus-associated pulmonary damage. Inflamm Res 64:589–602. https://doi.org/10.1007/s00011-015-0837-6

    Article  CAS  PubMed  Google Scholar 

  33. Du J, Luo J, Yu J et al (2019) Manipulation of intestinal antiviral innate immunity and immune evasion strategies of porcine epidemic diarrhea virus. Biomed Res Int 2019:1862531. https://doi.org/10.1155/2019/1862531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Annamalai T, Saif LJ, Lu Z, Jung K (2015) Age-dependent variation in innate immune responses to porcine epidemic diarrhea virus infection in suckling versus weaned pigs. Vet Immunol Immunopathol 168:193–202. https://doi.org/10.1016/j.vetimm.2015.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ahmad R, Kochumon S, Chandy B et al (2019) TNF-α drives the CCL4 expression in human monocytic cells: involvement of the SAPK/JNK and NF-κB signaling pathways. Cell Physiol Biochem 52:908–921. https://doi.org/10.33594/000000063

  36. Bickel M (1993) The role of interleukin-8 in inflammation and mechanisms of regulation. J Periodontol 64:456–460

    CAS  PubMed  Google Scholar 

  37. Huan C-C, Wang H-X, Sheng X-X et al (2016) Porcine epidemic diarrhea virus nucleoprotein contributes to HMGB1 transcription and release by interacting with C/EBP-β. Oncotarget 7:75064–75080. https://doi.org/10.18632/oncotarget.11991

  38. Weiss N, Schillinger U, Laternser M, Kandler O (1981) Lactobacillus sharpeae sp. nov. and Lactobacillus agilis sp. nov., two new species of homofermentative, meso-diaminopimelic acid-containing lactobacilli isolated from sewage. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I Abt Originale C: Allgemeine, angewandte und ökologische Mikrobiologie 2:242–253. https://doi.org/10.1016/s0721-9571(81)80005-1

    Article  Google Scholar 

  39. Kajikawa A, Midorikawa E, Masuda K et al (2016) Characterization of flagellins isolated from a highly motile strain of Lactobacillus agilis. BMC Microbiol 16:49. https://doi.org/10.1186/s12866-016-0667-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gudiña EJ, Fernandes EC, Teixeira JA, Rodrigues LR (2015) Antimicrobial and anti-adhesive activities of cell-bound biosurfactant from Lactobacillus agilis CCUG31450. RSC Adv 5:90960–90968. https://doi.org/10.1039/c5ra11659g

    Article  CAS  Google Scholar 

  41. Chaves BD, Brashears MM, Nightingale KK (2017) Applications and safety considerations of Lactobacillus salivarius as a probiotic in animal and human health. J Appl Microbiol 123:18–28. https://doi.org/10.1111/jam.13438

    Article  CAS  PubMed  Google Scholar 

  42. Biloni A, Quintana CF, Menconi A et al (2013) Evaluation of effects of EarlyBird associated with FloraMax-B11 on Salmonella enteritidis, intestinal morphology, and performance of broiler chickens. Poult Sci 92:2337–2346. https://doi.org/10.3382/ps.2013-03279

    Article  CAS  PubMed  Google Scholar 

  43. Drago L, Nicola L, Iemoli E et al (2010) Strain-dependent release of cytokines modulated by Lactobacillus salivarius human isolates in an in vitro model. BMC Res Notes 3:44. https://doi.org/10.1186/1756-0500-3-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang J, Ishfaq M, Guo Y et al (2020) Assessment of probiotic properties of Lactobacillus salivarius isolated from chickens as feed additives. Front Vet Sci 7:415. https://doi.org/10.3389/fvets.2020.00415

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shojadoost B, Kulkarni RR, Brisbin JT et al (2019) Interactions between lactobacilli and chicken macrophages induce antiviral responses against avian influenza virus. Res Vet Sci 125:441–450. https://doi.org/10.1016/j.rvsc.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  46. Shen H, Zhang C, Guo P et al (2016) Short communication: antiviral activity of porcine IFN-λ3 against porcine epidemic diarrhea virus in vitro. Virus Genes 52:877–882. https://doi.org/10.1007/s11262-016-1374-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guo X, Zhang M, Zhang X et al (2017) Porcine epidemic diarrhea virus induces autophagy to benefit its replication. Viruses 9:53. https://doi.org/10.3390/v9030053

    Article  CAS  PubMed Central  Google Scholar 

  48. Sun P, Wu H, Huang J et al (2018) Porcine epidemic diarrhea virus through p53-dependent pathway causes cell cycle arrest in the G0/G1 phase. Virus Res 253:1–11. https://doi.org/10.1016/j.virusres.2018.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the Ministry of Science and Technology (grant nos. MOST 110–2313-B-002–052-MY2 and MOST 109–2321-B-002–055) and Academia Sinica (grant nos. AS-KPQ-108-ITAR-TD03 and AS-KPQ-109-ITAR-TD03).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Je-Ruei Liu, Yang-Ming Chen, Hui-Wen Chang. Methodology: Je-Ruei Liu, Yang-Ming Chen, Hui-Wen Chang. Software: Je-Ruei Liu, Yang-Ming Chen, Aniket Limaye. Validation: Je-Ruei Liu, Yang-Ming Chen, Aniket Limaye. Formal analysis: Yang-Ming Chen. Investigation: Je-Ruei Liu, Yang-Ming Chen. Resources: Je-Ruei Liu, Yang-Ming Chen, and Hui-Wen Chang. Data curation: Yang-Ming Chen. Writing — original draft: Yang-Ming Chen, Aniket Limaye. Writing — review and editing: Aniket Limaye, Je-Ruei Liu. Visualization: Yang-Ming Chen. Supervision: Je-Ruei Liu. Project administration: Je-Ruei Liu. Funding acquisition: Je-Ruei Liu.

Corresponding author

Correspondence to Je-Ruei Liu.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors that should be approved by the Ethics Committee.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YM., Limaye, A., Chang, HW. et al. Screening of Lactic Acid Bacterial Strains with Antiviral Activity Against Porcine Epidemic Diarrhea. Probiotics & Antimicro. Prot. 14, 546–559 (2022). https://doi.org/10.1007/s12602-021-09829-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09829-w

Keywords

Navigation