Skip to main content

Advertisement

Log in

Effect of Akkermansia muciniphila, Faecalibacterium prausnitzii, and Their Extracellular Vesicles on the Serotonin System in Intestinal Epithelial Cells

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The gastrointestinal (GI) tract is an essential reservoir of serotonin or 5-hydroxytryptamine (5-HT), which possesses a set of bacterial species communities. Intestinal microbiota has the ability to modulate the host’s serotonin system. In this regard, we evaluated the effect of Akkermansia muciniphila and Faecalibacterium prausnitzii along with their extracellular vesicles (EVs) on serotonin system-related genes in human epithelial colorectal adenocarcinoma (Caco-2) cells. The differentiated Caco-2 cells were treated with A. muciniphila and F. prausnitzii with the multiplicity of infection ratio of 1 and 10 and the EV concentration of 1 μg/mL and 50 μg/mL, respectively. After 24 h, the serotonin level was quantified using an ELISA kit and also the gene expression of serotonin system-related genes was examined using the quantitative real-time PCR method. According to the results, treatment with A. muciniphila and F. prausnitzii-derived EVs increased the serotonin level, while none of the bacteria could affect the serotonin level in the Caco-2 cells. Both bacteria had significant effects on the mRNA expression of serotonin system-related genes in the Caco-2 cells. Moreover, we observed that A. muciniphila and F. prausnitzii-derived EVs could impact the expression of major genes involved in the serotonin system. Our findings showed that A. muciniphila and F. prausnitzii along with their EVs could modulate serotonin system-related genes; hence, they may be useful in microbiota modulation therapies to maintain the homeostasis of the serotonin system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors declare that all data generated or analyzed during this study are included in this published article.

References

  1. Belkaid Y, Harrison OJ (2017) Homeostatic immunity and the microbiota. Immunity 46:562–576. https://doi.org/10.1016/j.immuni.2017.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–1463. https://doi.org/10.1016/j.cell.2013.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Noble EE, Hsu TM, Kanoski SE (2017) Gut to brain dysbiosis: mechanisms linking western diet consumption, the microbiome, and cognitive impairment. Front Behav Neurosci 11:9. https://doi.org/10.3389/fnbeh.2017.00009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848. https://doi.org/10.1016/j.cell.2006.02.017

    Article  CAS  PubMed  Google Scholar 

  5. Gershon MD, Tack J (2007) The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132:397–414. https://doi.org/10.1053/j.gastro.2006.11.002

    Article  CAS  PubMed  Google Scholar 

  6. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–276. https://doi.org/10.1016/j.cell.2015.02.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reigstad CS, SalmonsonJFR, Szurszewski JH, Linden DR, Sonnenburg JL, Farrugia G, Kashyap PC, CE III (2015) Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 29:1395–1403. https://doi.org/10.1096/fj.14-259598

    Article  CAS  PubMed  Google Scholar 

  8. Kho ZY, Lal SK (2018) The human gut microbiome—a potential controller of wellness and disease. Front Microbiol 9:1835. https://doi.org/10.3389/fmicb.2018.01835

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stasi C, Sadalla S, Milani S (2019) The relationship between the serotonin metabolism, gut-microbiota and the gut-brain axis. Curr Drug Metab 20:646–655. https://doi.org/10.2174/1389200220666190725115503

    Article  CAS  PubMed  Google Scholar 

  10. Foxx-Orenstein AE, Chey WD (2012) Manipulation of the gut microbiota as a novel treatment strategy for gastrointestinal disorders. Am J Gastroenterol 1:41–46. https://doi.org/10.1038/ajgsup.2012.8

    Article  CAS  Google Scholar 

  11. Collado MC, Bäuerl C, Pérez-Martínez G (2012) Defining microbiota for developing new probiotics. Microb Ecol Health Dis 23:18579. https://doi.org/10.3402/mehd.v23i0.18579

    Article  Google Scholar 

  12. Zhang T, Li P, Wu X, Lu G, Marcella C, Ji X, Ji G, Zhang F (2020) Alterations of Akkermansia muciniphila in the inflammatory bowel disease patients with washed microbiota transplantation. Appl Microbiol Biotechnol 104:10203–10215. https://doi.org/10.1007/s00253-020-10948-7

    Article  CAS  PubMed  Google Scholar 

  13. Lopez-Siles M, Enrich-Capó N, Aldeguer X, Sabat-Mir M, Duncan SH, Garcia-Gil LJ, Martinez-Medina M (2018) Alterations in the abundance and co-occurrence of Akkermansia muciniphila and Faecalibacterium prausnitzii in the colonic mucosa of inflammatory bowel disease subjects. Front Cell Infect Microbiol 8:281. https://doi.org/10.3389/fcimb.2018.00281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Singhal M, Turturice BA, Manzella CR, Ranjan R, Metwally AA, Theorell J, Huang Y, Alrefai WA, Dudeja PK, Finn PW (2019) Serotonin transporter deficiency is associated with dysbiosis and changes in metabolic function of the mouse intestinal microbiome. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-38489-8

    Article  CAS  Google Scholar 

  15. Lopez-Siles M, Martinez-Medina M, Surís-Valls R, Aldeguer X, Sabat-Mir M, Duncan SH, Flint HJ, Garcia-Gil LJ (2016) Changes in the abundance of Faecalibacterium prausnitzii phylogroups I and II in the intestinal mucosa of inflammatory bowel disease and patients with colorectal cancer. Inflamm Bowel Dis 22:28–41. https://doi.org/10.1097/MIB.0000000000000590

    Article  PubMed  Google Scholar 

  16. Lee EY, Bang JY, Park GW, Choi DS, Kang JS, Kim HJ, Park KS, Lee JO, Kim YK, Kwon KH (2007) Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics 7:3143–3153. https://doi.org/10.1002/pmic.200700196

    Article  PubMed  Google Scholar 

  17. Macia L, Nanan R, Hosseini-Beheshti E, Grau GE (2020) Host-and microbiota-derived extracellular vesicles, immune function, and disease development. Int J Mol Sci 21:107. https://doi.org/10.3390/ijms21010107

    Article  CAS  Google Scholar 

  18. Kang C-s, Ban M, Choi E-J, Moon H-G, Jeon J-S, Kim D-K, Park S-K, Jeon SG, Roh T-Y, Myung S-J (2013) Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS One 8:e76520. https://doi.org/10.1371/journal.pone.0076520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee AK, Mojtahed-Jaberi M, Kyriakou T, Astarloa EA-O, Arno M, Marshall NJ, Brain SD, O’Dell SD (2010) Effect of high-fat feeding on expression of genes controlling availability of dopamine in mouse hypothalamus. Nutrition 26:411–422. https://doi.org/10.1016/j.nut.2009.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhong H, Dang J, Huo Z, Ma Z, Chen J, Huang Y, Zhu Y, Li M (2018) Effects of medial prefrontal cortex 5-HT7 receptor knockdown on cognitive control after acute heroin administration. Brain Res 1678:419–431. https://doi.org/10.1016/j.brainres.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  21. Shao Y, Wolf PG, Guo S, Guo Y, Gaskins HR, Zhang B (2017) Zinc enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells. J Nutr Biochem 43:18–26. https://doi.org/10.1016/j.jnutbio.2017.01.013

    Article  CAS  PubMed  Google Scholar 

  22. Wettenhall JM, Smyth GK (2004) limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics 20:3705–3706. https://doi.org/10.1093/bioinformatics/bth449

    Article  CAS  PubMed  Google Scholar 

  23. Leek J, Johnson W, Parker H (2019) sva: Surrogate Variable Analysis R package version 3.10.0 2019. https://doi.org/10.18129/B9.bioc.sva

  24. Tian P, O’Riordan KJ, Lee Y-k, Wang G, Zhao J, Zhang H, Cryan JF, Chen W (2020) Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice. Neurobiol Stress 12:100216. https://doi.org/10.1016/j.ynstr.2020.100216

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jin D-C, Cao H-L, Xu M-Q, Wang S-N, Wang Y-M, Yan F, Wang B-M (2016) Regulation of the serotonin transporter in the pathogenesis of irritable bowel syndrome. World J Gastroenterol 22:8137–8148. https://doi.org/10.3748/wjg.v22.i36.8137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tada Y, Ishihara S, Kawashima K, Fukuba N, Sonoyama H, Kusunoki R, Oka A, Mishima Y, Oshima N, Moriyama I (2016) Downregulation of serotonin reuptake transporter gene expression in healing colonic mucosa in presence of remaining low-grade inflammation in ulcerative colitis. Gastroenterol Hepatol 31:1443–1452. https://doi.org/10.1111/jgh.13268

    Article  CAS  Google Scholar 

  27. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney R, Shanahan F, Dinan T, Cryan J (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666–673. https://doi.org/10.1038/mp.2012.77

    Article  CAS  PubMed  Google Scholar 

  28. Yaghoubfar R, Behrouzi A, Ashrafian F, Shahryari A, Moradi HR, Choopani S, Hadifar S, Vaziri F, Nojoumi SA, Fateh A (2020) Modulation of serotonin signaling/metabolism by Akkermansia muciniphila and its extracellular vesicles through the gut-brain axis in mice. Sci Rep 10:22119. https://doi.org/10.1038/s41598-020-79171-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ashrafian F, Shahryari A, Behrouzi A, Moradi HR, Lari A, Hadifar S, Yaghobfar R, Ahmadi Badi S, Vaziri F, Siadat SD (2019) Akkermansia muciniphila-derived extracellular vesicles as a mucosal delivery vector for amelioration of obesity in mice. Front Microbiol 10:2155. https://doi.org/10.3389/fmicb.2019.02155

    Article  PubMed  PubMed Central  Google Scholar 

  30. Alvarez C-S, Badia J, Bosch M, Giménez R, Baldomà L (2016) Outer membrane vesicles and soluble factors released by probiotic Escherichia coli Nissle 1917 and commensal ECOR63 enhance barrier function by regulating expression of tight junction proteins in intestinal epithelial cells. Front Microbiol 7:1981. https://doi.org/10.3389/fmicb.2016.01981

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fábrega MJ, Aguilera L, Giménez R, Varela E, Alexandra Canas M, Antolín M, Badía J, Baldomà L (2016) Activation of immune and defense responses in the intestinal mucosa by outer membrane vesicles of commensal and probiotic Escherichia coli strains. Front Microbiol 7:705. https://doi.org/10.3389/fmicb.2016.00705

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fukumoto S, Tatewaki M, Yamada T, Fujimiya M, Mantyh C, Voss M, Eubanks S, Harris M, Pappas TN, Takahashi T (2003) Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am J Physiol Regul Integr Comp Physiol 284:1269–1276. https://doi.org/10.1152/ajpregu.00442.2002

    Article  Google Scholar 

  33. Li H, Wang P, Huang L, Li P, Zhang D (2019) Effects of regulating gut microbiota on the serotonin metabolism in the chronic unpredictable mild stress rat model. Neurogastroenterol Motil 31:e13677. https://doi.org/10.1111/nmo.13677

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, Ge X, Wang W, Wang T, Cao H, Wang B, Wang B (2015) Lactobacillus rhamnosus GG supernatant upregulates serotonin transporter expression in intestinal epithelial cells and mice intestinal tissues. Neurogastroenterol Motil 27:1239–1248. https://doi.org/10.1111/nmo.12615

    Article  CAS  PubMed  Google Scholar 

  35. Cao Y-N, Feng L-J, Wang B-M, Jiang K, Li S, Xu X, Wang W-Q, Zhao J-W, Wang Y-M (2018) Lactobacillus acidophilus and Bifidobacterium longum supernatants upregulate the serotonin transporter expression in intestinal epithelial cells. Saudi J Gastroenterol 24:59. https://doi.org/10.4103/sjg.SJG_333_17

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tsuruta T, Saito S, Osaki Y, Hamada A, Aoki-Yoshida A, Sonoyama K (2016) Organoids as an ex vivo model for studying the serotonin system in the murine small intestine and colon epithelium. Biochem Biophys Res Commun 474:161–167. https://doi.org/10.1016/j.bbrc.2016.03.165

    Article  CAS  PubMed  Google Scholar 

  37. Fox M, Panessiti M, Moya P, Tolliver T, Chen K, Shih J, Murphy D (2013) Mutations in monoamine oxidase (MAO) genes in mice lead to hypersensitivity to serotonin-enhancing drugs: implications for drug side effects in humans. Pharmacogenomics J 13:551–557. https://doi.org/10.1038/tpj.2012.35

    Article  CAS  PubMed  Google Scholar 

  38. Shajib MS, Chauhan U, Adeeb S, Chetty Y, Armstrong D, Halder SL, Marshall JK, Khan WI (2019) Characterization of serotonin signaling components in patients with inflammatory bowel disease. J Can Assoc Gastroenterol 2:132–140. https://doi.org/10.1093/jcag/gwy039

    Article  PubMed  Google Scholar 

  39. Mawe GM, Hoffman JM (2013) Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol 10:473. https://doi.org/10.1038/nrgastro.2013.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Camilleri M, Mayer E, Drossman D, Heath A, Dukes G, McSorley D, Kong S, Mangel A, Northcutt A (1999) Improvement in pain and bowel function in female irritable bowel patients with alosetron, a 5-HT3 receptor antagonist. Aliment Pharmacol Ther 13:1149–1159. https://doi.org/10.1046/j.1365-2036.1999.00610.x

    Article  CAS  PubMed  Google Scholar 

  41. Fujita T, Yokota S, Sawada M, Majima M, Ohtani Y, Kumagai Y (2005) Effect of MKC-733, a 5-HT3 receptor partial agonist, on bowel motility and symptoms in subjects with constipation: an exploratory study. J Clin Pharm Ther 30:611–622. https://doi.org/10.1111/j.1365-2710.2005.00695.x

    Article  CAS  PubMed  Google Scholar 

  42. Thomas RH, Luthin DR (2015) Current and emerging treatments for irritable bowel syndrome with constipation and chronic idiopathic constipation: focus on prosecretory agents. Pharmacotherapy 35: 613–630. https://doi.org/10.1002/phar.1594

  43. Zhu L, Lu X, Liu L, Voglmeir J, Zhong X, Yu Q (2020) Akkermansia muciniphila protects intestinal mucosa from damage caused by S. pullorum by initiating proliferation of intestinal epithelium. Vet Res 51:1–9. https://doi.org/10.1186/s13567-020-00755-3

    Article  Google Scholar 

  44. Reunanen J, Kainulainen V, Huuskonen L, Ottman N, Belzer C, Huhtinen H, de Vos WM, Satokari R (2015) Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Appl Environ Microbiol 81:3655–3662. https://doi.org/10.1128/AEM.04050-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Spohn SN, Mawe GM (2017) Non-conventional features of peripheral serotonin signalling—the gut and beyond. Nat Rev Gastroenterol Hepatol 14:412–420. https://doi.org/10.1038/nrgastro.2017.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ashrafian F, Behrouzi A, Shahriary A, Ahmadi Badi S, Davari M, Khatami S, Rahimi Jamnani F, Fateh A, Vaziri F, Siadat SD (2019) Comparative study of effect of Akkermansia muciniphila and its extracellular vesicles on toll-like receptors and tight junction. Gastroenterol Hepatol Bed Bench 12: 163–168. https://doi.org/10.22037/ghfbb.v12i2.1537

  47. Thompson AJ, Lummis SC (2007) The 5-HT3 receptor as a therapeutic target. Expert Opin Ther Targets 11:527–540. https://doi.org/10.1517/14728222.11.4.527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bhattarai Y, Schmidt BA, Linden DR, Larson ED, Grover M, Beyder A, Farrugia G, Kashyap PC (2017) Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production. Am J Physiol Gastrointest Liver Physiol 313:G80–G87. https://doi.org/10.1096/fasebj.31.1_supplement.856.19

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the laboratory staff of Microbiology Research Center (MRC) and Department of Mycobacteriology and Pulmonary Research of Pasteur Institute of Iran.

Funding

This study was funded by Pasteur Institute of Iran (Grant No. B-9325).

Author information

Authors and Affiliations

Authors

Contributions

R.Y., A.B., F.A., and F.A. performed the experiments; E.Z.B.K. and A.L. had role in acquisition of data; A.L. and F.V. analyzed the data; A.N. and A.F. read and approved final manuscript; S.D.S. and SH.KH. designed and supervised the study, read, and approved manuscript.

Corresponding authors

Correspondence to Abolfazl Fateh or Shohreh Khatami.

Ethics declarations

Ethical Approval

This work does not contain any studies related with human participants or animals.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghoubfar, R., Behrouzi, A., Zare Banadkoki, E. et al. Effect of Akkermansia muciniphila, Faecalibacterium prausnitzii, and Their Extracellular Vesicles on the Serotonin System in Intestinal Epithelial Cells. Probiotics & Antimicro. Prot. 13, 1546–1556 (2021). https://doi.org/10.1007/s12602-021-09786-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09786-4

Keywords

Navigation