Skip to main content

Advertisement

Log in

The Administration Matrix Modifies the Beneficial Properties of a Probiotic Mix of Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus acidophilus LA-5

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Consumption of dairy products is one of the most natural ways to introduce probiotics. However, the beneficial effects of the probiotics might depend on the administration form. The aim of this study was to investigate the beneficial properties of two probiotic strains: Bifidobacterium animalis subsp. lactis (BB-12) and Lactobacillus acidophilus (LA-5) in different administration forms (capsules and yogurt). First, in vitro resistance to gastrointestinal condition, surface properties, and immunomodulation capacities were determined. Then, the anti-inflammatory properties of the probiotic strains administrated on yogurt or capsules were tested in a dinitrobenzene sulfonic acid (DNBS)-induced colitis mouse model. The survival rates of BB-12 and LA-5 strains to gastrointestinal conditions were slightly higher when yogurt was used as carrier. They showed most affinity to hexane (no-polar basic solvent) than ethyl-acetate (polar basic solvent). BB-12 showed the higher binding capacity to HT-29, Caco-2, and mucin. Both probiotic candidates suppress the secretion of IL-8 secretion by HT-29-TNF-α stimulated cells. Finally, administration of BB-12 and LA-5 strains improve colitis in mice. They protect against weight loss, inflammation, and hyperpermeability induced by DNBS. However, these anti-inflammatory effects were limited when mice were treated with the probiotic strain on a yogurt matrix. Overall results indicate that BB-12 and LA-5 positive properties are compromised depending on the matrix. Consequently, the selection of an appropriate matrix is an important criterion to conserve the positive benefits of these probiotic strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

All data and materials support their published claims and comply with field standards.

References

  1. FAO/WHO (2002) Food and agriculture organization of the united nations/world health organization. Guidelines for the Evaluation of Probiotics in Food. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food

  2. Alves LL, Richards NSPS, Mattanna P, Andrade DF, Rezer APS, Milani LIG, Cruz AG, Faria JAF (2013) Cream cheese as a symbiotic food carrier using Bifidobacterium animalis Bb-12 and Lactobacillus acidophilus La-5 and inulin. Int J Dairy Technol 66(1):63–69. https://doi.org/10.1111/j.1471-0307.2012.00880.x

    Article  CAS  Google Scholar 

  3. Magariños H, Selaive S, Costa M, Flores M, Pizarro O (2007) Viability of probiotic micro-organisms (Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis Bb-12) in ice cream. Int J Dairy Technol 60(2):128–134. https://doi.org/10.1111/j.1471-0307.2007.00307.x

    Article  Google Scholar 

  4. Putta S, Yarla NS, Lakkappa DB, Imandi SB, Malla RR, Chaitanya AK, Chari BPV, Saka S, Vechalapu RR, Kamal MA, Tarasov VV, Chubarev VN, Siva Kumar K, Aliev G (2018) Chapter 2 - probiotics: supplements, food, pharmaceutical industry. In: Grumezescu AM, Holban AM (eds) Therapeutic, probiotic, and unconventional foods. Academic Press, pp 15-25. https://doi.org/10.1016/B978-0-12-814625-5.00002-9

  5. Sheikhi A, Shakerian M, Giti H, Baghaeifar M, Jafarzadeh A, Ghaed V, Heibor MR, Baharifar N, Dadafarin Z, Bashirpour G (2016) Probiotic yogurt culture Bifidobacterium Animalis Subsp. Lactis BB-12 and Lactobacillus Acidophilus LA-5 modulate the cytokine secretion by peripheral blood mononuclear cells from patients with ulcerative colitis. Drug Res (Stuttg) 66(06):300–305. https://doi.org/10.1055/s-0035-1569414

    Article  CAS  Google Scholar 

  6. Putt KK, Pei R, White HM, Bolling BW (2017) Yogurt inhibits intestinal barrier dysfunction in Caco-2 cells by increasing tight junctions. Food Funct 8(1):406–414. https://doi.org/10.1039/C6FO01592A

    Article  CAS  PubMed  Google Scholar 

  7. Bogovič Matijašić B, Obermajer T, Lipoglavšek L, Sernel T, Locatelli I, Kos M, Šmid A, Rogelj I (2016) Effects of synbiotic fermented milk containing Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis BB-12 on the fecal microbiota of adults with irritable bowel syndrome: a randomized double-blind, placebo-controlled trial. J Dairy Sci 99(7):5008–5021. https://doi.org/10.3168/jds.2015-10743

    Article  CAS  PubMed  Google Scholar 

  8. de Vrese M, Kristen H, Rautenberg P, Laue C, Schrezenmeir J (2011) Probiotic lactobacilli and bifidobacteria in a fermented milk product with added fruit preparation reduce antibiotic associated diarrhea and Helicobacter pylori activity. JJ Dairy Res 78(4):396–403. https://doi.org/10.1017/S002202991100063X

    Article  CAS  Google Scholar 

  9. Sheu B-S, Cheng H-C, Kao A-W, Wang S-T, Yang Y-J, Yang H-B, Wu J-J (2006) Pretreatment with Lactobacillus- and Bifidobacterium-containing yogurt can improve the efficacy of quadruple therapy in eradicating residual Helicobacter pylori infection after failed triple therapy. Am J Clin Nutr 83(4):864–869. https://doi.org/10.1093/ajcn/83.4.864

    Article  CAS  PubMed  Google Scholar 

  10. Ruiz PA, Hoffmann M, Szcesny S, Blaut M, Haller D (2005) Innate mechanisms for Bifidobacterium lactis to activate transient pro-inflammatory host responses in intestinal epithelial cells after the colonization of germ-free rats. Immunology 115(4):441–450. https://doi.org/10.1111/j.1365-2567.2005.02176.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee B, Yin X, Griffey SM, Marco ML (2015) Attenuation of colitis by Lactobacillus casei BL23 is dependent on the dairy delivery matrix. Appl Environ Microbiol 81(18):6425–6435. https://doi.org/10.1128/AEM.01360-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharp JA, Digby M, Lefevre C, Mailer S, Khalil E, Topcic D, Auguste A, Kwek J, Brennan AJ, Familari M, Nicholas KR (2008) Chapter 2 - the comparative genomics of tammar wallaby and Cape fur seal lactation models to examine function of milk proteins. In: Thompson A, Boland M, Singh H (eds) Milk Proteins. Academic Press, San Diego, pp 55–79. https://doi.org/10.1016/B978-0-12-374039-7.00002-7

    Chapter  Google Scholar 

  13. Roobab U, Batool Z, Manzoor MF, Shabbir MA, Khan MR, Aadil RM (2020) Sources, formulations, advanced delivery and health benefits of probiotics. Curr Opin Food Sci 32:17–28. https://doi.org/10.1016/j.cofs.2020.01.003

    Article  Google Scholar 

  14. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514. https://doi.org/10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  15. Zucko J, Starcevic A, Diminic J, Oros D, Mortazavian AM, Putnik P (2020) Probiotic – friend or foe? Curr Opin Food Sci 32:45–49. https://doi.org/10.1016/j.cofs.2020.01.007

    Article  Google Scholar 

  16. Paseephol T, Sherkat F (2009) Probiotic stability of yoghurts containing Jerusalem artichoke inulins during refrigerated storage. J Funct Foods 1(3):311–318. https://doi.org/10.1016/j.jff.2009.07.001

    Article  CAS  Google Scholar 

  17. Zhai Z, Wang J, Huang B, Yin S (2019) Low-fat yogurt alleviates the pro-inflammatory cytokine IL-1β-induced intestinal epithelial barrier dysfunction. J Dairy Sci 102(2):976–984. https://doi.org/10.3168/jds.2018-15226

    Article  CAS  PubMed  Google Scholar 

  18. Cordeiro BF, Lemos L, Oliveira ER, Silva SH, Savassi B, Figueiroa A, Faria AMC, Ferreira E, Esmerino EA, Rocha RS, Freitas MQ, Silva MC, Cruz AG, do Carmo FLR, Azevedo V (2019) Prato cheese containing Lactobacillus casei 01 fails to prevent dextran sodium sulphate-induced colitis. Int Dairy J 99:104551. https://doi.org/10.1016/j.idairyj.2019.104551

    Article  CAS  Google Scholar 

  19. Vinderola CG, Bailo N, Reinheimer JA (2000) Survival of probiotic microflora in Argentinian yoghurts during refrigerated storage. Food Res Int 33(2):97–102. https://doi.org/10.1016/s0963-9969(00)00011-9

    Article  CAS  Google Scholar 

  20. FAO/WHO (2011) Fermented milks (CODEX STAN 243–2003). In Milk and Milk Products. World health organization Food and agriculture organization of the United Nations, Rome

  21. Zendeboodi F, Khorshidian N, Mortazavian AM, da Cruz AG (2020) Probiotic: conceptualization from a new approach. Curr Opin Food Sci 32:103–123. https://doi.org/10.1016/j.cofs.2020.03.009

    Article  Google Scholar 

  22. Bailey JR, Probert CSJ, Cogan TA (2011) Identification and characterisation of an iron-responsive candidate probiotic. PLoS One 6(10):e26507. https://doi.org/10.1371/journal.pone.0026507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee HM, Lee Y (2008) A differential medium for lactic acid-producing bacteria in a mixed culture. Lett Appl Microbiol 46(6):676–681. https://doi.org/10.1111/j.1472-765X.2008.02371.x

    Article  CAS  PubMed  Google Scholar 

  24. Vinderola CG, Reinheimer JA (2003) Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res Int 36(9):895–904. https://doi.org/10.1016/S0963-9969(03)00098-X

    Article  CAS  Google Scholar 

  25. Turpin W, Humblot C, Noordine ML, Thomas M, Guyot JP (2012) Lactobacillaceae and cell adhesion: genomic and functional screening. PLoS One 7(5):e38034-e38034. https://doi.org/10.1371/journal.pone.0038034

    Article  CAS  Google Scholar 

  26. Kechaou N, Chain F, Gratadoux JJ, Blugeon S, Bertho N, Chevalier C, Le Goffic R, Courau S, Molimard P, Chatel JM, Langella P, Bermúdez-Humarán LG (2013) Identification of one novel candidate probiotic Lactobacillus plantarum strain active against influenza virus infection in mice by a large-scale screening. Appl Environ Microbiol 79(5):1491–1499. https://doi.org/10.1128/AEM.03075-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, Carrière F, Boutrou R, Corredig M, Dupont D, Dufour C, Egger L, Golding M, Karakaya S, Kirkhus B, Le Feunteun S, Lesmes U, Macierzanka A, Mackie A, Marze S, McClements DJ, Ménard O, Recio I, Santos CN, Singh RP, Vegarud GE, Wickham MSJ, Weitschies W, Brodkorb A (2014) A standardised static in vitro digestion method suitable for food – an international consensus. Food Funct 5(6):1113–1124. https://doi.org/10.1039/C3FO60702J

    Article  CAS  PubMed  Google Scholar 

  28. Martín R, Chain F, Miquel S, Lu J, Gratadoux JJ, Sokol H, Verdu EF, Bercik P, Bermúdez-Humarán LG, Langella P (2014) The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflamm Bowel Dis 20(3):417–430. https://doi.org/10.1097/01.MIB.0000440815.76627.64

    Article  PubMed  Google Scholar 

  29. Barone M, Chain F, Sokol H, Brigidi P, Bermúdez-Humarán LG, Langella P, Martín R (2018) A versatile new model of chemically induced chronic colitis using an outbred murine strain. Front Microbiol 9(565). https://doi.org/10.3389/fmicb.2018.00565

  30. Guarner F, Schaafsma GJ (1998) Probiotics. Int J Food Microbiol 39(3):237–238. https://doi.org/10.1016/S0168-1605(97)00136-0

    Article  CAS  PubMed  Google Scholar 

  31. Ren D-Y, Li C, Qin Y-Q, Yin R-L, Du S-W, Ye F, Liu H-F, Wang M-P, Sun Y, Li X, Tian M-Y, Jin N-Y (2013) Lactobacilli reduce chemokine IL-8 production in response to TNF-α and Salmonella challenge of Caco-2 cells. Biomed Res Int 2013:925219–925219. https://doi.org/10.1155/2013/925219

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shakirova L, Grube M, Gavare M, Auzina L, Zikmanis P (2013) Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 cell surface hydrophobicity and survival of the cells under adverse environmental conditions. J Ind Microbiol Biotechnol 40(1):85–93. https://doi.org/10.1007/s10295-012-1204-z

    Article  CAS  PubMed  Google Scholar 

  33. Bellon-Fontaine MN, Rault J, van Oss CJ (1996) Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells. Colloid Surface B 7(1):47–53. https://doi.org/10.1016/0927-7765(96)01272-6

    Article  CAS  Google Scholar 

  34. Jungersen M, Wind A, Johansen E, Christensen JE, Stuer-Lauridsen B, Eskesen D (2014) The science behind the probiotic strain Bifidobacterium animalis subsp. lactis BB-12®. Microorganisms 2(2):92–110. https://doi.org/10.3390/microorganisms2020092

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vemuri R, Shinde T, Shastri MD, Perera AP, Tristram S, Martoni CJ, Gundamaraju R, Ahuja KDK, Ball M, Eri R (2018) A human origin strain Lactobacillus acidophilus DDS-1 exhibits superior in vitro probiotic efficacy in comparison to plant or dairy origin probiotics. Int J Med Sci 15(9):840–848. https://doi.org/10.7150/ijms.25004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li S-C, Hsu W-F, Chang J-S, Shih C-K (2019) Combination of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis shows a stronger anti-inflammatory effect than individual strains in HT-29 cells. Nutrients 11(5):969. https://doi.org/10.3390/nu11050969

    Article  CAS  PubMed Central  Google Scholar 

  37. Imaoka A, Shima T, Kato K, Mizuno S, Uehara T, Matsumoto S, Setoyama H, Hara T, Umesaki Y (2008) Anti-inflammatory activity of probiotic Bifidobacterium: enhancement of IL-10 production in peripheral blood mononuclear cells from ulcerative colitis patients and inhibition of IL-8 secretion in HT-29 cells. World J Gastroenterol 14(16):2511–2516. https://doi.org/10.3748/wjg.14.2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ruiz L, Ruas-Madiedo P, Gueimonde M, de los Reyes-Gavilán CG, Margolles A, Sánchez B (2011) How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes Nutr 6(3):307–318. https://doi.org/10.1007/s12263-010-0207-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tamime AY, Saarela M, Wszolek M, Ghoddousi H, Linares DM, Shah NP (2017) Production and maintaining viability of probiotic micro-organisms in dairy products. In: Probiotic Dairy Products, pp 67–164. https://doi.org/10.1002/9781119214137.ch4

    Chapter  Google Scholar 

  40. Muñoz IB, Verruck S, Canella MHM, Dias CO, Amboni RDMC, Prudencio ES (2018) The use of soft fresh cheese manufactured from freeze concentrated milk as a novelty protective matrix on Bifidobacterium BB-12 survival under in vitro simulated gastrointestinal conditions. LWT 97:725–729. https://doi.org/10.1016/j.lwt.2018.08.009

    Article  CAS  Google Scholar 

  41. Kim M, Oh S, Imm J-Y (2018) Buffering capacity of dairy powders and their effect on yoghurt quality. Korean J Food Sci Anim Resour 38(2):273–281. https://doi.org/10.5851/kosfa.2018.38.2.273

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ogita T, Nakashima M, Morita H, Saito Y, Suzuki T, Tanabe S (2011) Streptococcus thermophilus ST28 ameliorates colitis in mice partially by suppression of inflammatory Th17 cells. J Biomed Biotechnol 2011:378417–378419. https://doi.org/10.1155/2011/378417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Uriot O, Denis S, Junjua M, Roussel Y, Dary-Mourot A, Blanquet-Diot S (2017) Streptococcus thermophilus: from yogurt starter to a new promising probiotic candidate? J Funct Foods 37:74–89. https://doi.org/10.1016/j.jff.2017.07.038

    Article  CAS  Google Scholar 

Download references

Funding

GP scholarship was funded by CAMPUS France Hongrie (896369K). GP is a PhD student funded by the University of Kaposvar.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by GP, ETM, and RM. The first draft of the manuscript was written by GP, ETM, and RM. The manuscript was corrected by RM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rebeca Martín.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

All animal experiments performed received authorization numbers by the French ministry of Education nationale, enseignement supérieur et recherche (3445-2016010615159974 and 16744-201807061805486).

Code Availability

All used software application or custom code supports their published claims and complies with field standards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPT 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pápai, G., Torres-Maravilla, E., Chain, F. et al. The Administration Matrix Modifies the Beneficial Properties of a Probiotic Mix of Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus acidophilus LA-5. Probiotics & Antimicro. Prot. 13, 484–494 (2021). https://doi.org/10.1007/s12602-020-09702-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09702-2

Keywords

Navigation