Skip to main content
Log in

In Silico Prediction and In Vitro Assessment of Multifunctional Properties of Postbiotics Obtained From Two Probiotic Bacteria

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

In this study, a global metabolite profile using Raman spectroscopy analysis was obtained in order to predict, by an in silico prediction of activity spectra for substance approach, the bioactivities of the intracellular content (IC) and cell wall (CW) fractions obtained from Lactobacillus casei CRL 431 and Bacillus coagulans GBI-30 strains. Additionally, multifunctional in vitro bioactivity of IC and CW fractions was also assessed. The metabolite profile revealed a variety of compounds (fatty acids, amino acids, coenzyme, protein, amino sugars), with significant probable activities (Pa > 0.7) as immune-stimulant, anti-inflammatory, neuroprotective, antiproliferative, immunomodulator, and antineoplastic, among others. Moreover, in vitro assays exhibited that both IC and CW fractions presented angiotensin-converting enzyme–inhibitory (> 90%), chelating (> 79%), and antioxidant (ca. 22–57 cellular antioxidant activity units) activities. Our findings based on in silico and in vitro analyses suggest that L. casei CRL 431 and B. coagulans GBI-30 strains appear to be promising sources of postbiotics and may impart health benefits by their multifunctional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aguilar-Toalá J, Garcia-Varela R, Garcia H, Mata-Haro V, González-Córdova A, Vallejo-Cordoba B, Hernández-Mendoza A (2018) Postbiotics: an evolving term within the functional foods field. Trends Food Sci Technol 75:105–114

    Google Scholar 

  2. Kareem KY, Ling FH, Chwen LT, Foong OM, Asmara SA (2014) Inhibitory activity of postbiotic produced by strains of Lactobacillus plantarum using reconstituted media supplemented with inulin. Gut Pathog 6(1):23. https://doi.org/10.1186/1757-4749-6-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Phister TG, O'Sullivan DJ, McKay LL (2004) Identification of bacilysin, chlorotetaine, and iturin A produced by Bacillus sp. strain CS93 isolated from pozol, a Mexican fermented maize dough. Appl Environ Microbiol 70(1):631–634

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Amaretti A, Di Nunzio M, Pompei A, Raimondi S, Rossi M, Bordoni A (2013) Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Appl Microbiol Biotechnol 97(2):809–817

    CAS  PubMed  Google Scholar 

  5. Xing J, Wang G, Zhang Q, Liu X, Yin B, Fang D, Zhao J, Zhang H, Chen YQ, Chen W (2015) Determining antioxidant activities of lactobacilli by cellular antioxidant assay in mammal cells. J Funct Foods 19:554–562

    CAS  Google Scholar 

  6. Lee MJ, Zang Z, Choi EY, Shin HK, Ji GE (2002) Cytoskeleton reorganization and cytokine production of macrophages by bifidobacterial cells and cell-free extracts. J Microbiol Biotechnol 12(3):398–405

    CAS  Google Scholar 

  7. Jensen GS, Benson KF, Carter SG, Endres JR (2010) GanedenBC 30™ cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro. BMC Immunol 11:1–15

    Google Scholar 

  8. Aguilar-Toalá J, Astiazarán-García H, Estrada-Montoya M, Garcia H, Vallejo-Cordoba B, González-Córdova A, Hernández-Mendoza A (2018) Modulatory effect of the intracellular content of Lactobacillus casei CRL 431 against the aflatoxin B1-induced oxidative stress in rats. Probiotics Antimicrob Proteins 11:1–8. https://doi.org/10.1007/s12602-018-9433-8

    Article  CAS  Google Scholar 

  9. Nakamura F, Ishida Y, Sawada D, Ashida N, Sugawara T, Sakai M, Goto T, Kawada T, Fujiwara S (2016) Fragmented lactic acid bacterial cells activate peroxisome proliferator-activated receptors and ameliorate dyslipidemia in obese mice. J Agric Food Chem 64(12):2549–2559

    CAS  PubMed  Google Scholar 

  10. Shin HS, Park SY, Lee DK, Kim SA, An HM, Kim JR, Kim MJ, Cha MG, Lee SW, Kim KJ (2010) Hypocholesterolemic effect of sonication-killed Bifidobacterium longum isolated from healthy adult Koreans in high cholesterol fed rats. Arch Pharm Res 33(9):1425–1431

    CAS  PubMed  Google Scholar 

  11. Datta S, Timson DJ, Annapure US (2017) Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii. J Sci Food Agric 97(9):3039–3049

    CAS  PubMed  Google Scholar 

  12. Vidal K, Donnet-Hughes A, Granato D (2002) Lipoteichoic acids from Lactobacillus johnsonii strain La1 and Lactobacillus acidophilus strain La10 antagonize the responsiveness of human intestinal epithelial HT29 cells to lipopolysaccharide and gram-negative bacteria. Infect Immun 70(4):2057–2064

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kusić D, Kampe B, Rösch P, Popp J (2014) Identification of water pathogens by Raman microspectroscopy. Water Res 48:179–189

    PubMed  Google Scholar 

  14. Liu T-T, Lin Y-H, Hung C-S, Liu T-J, Chen Y, Huang Y-C, Tsai T-H, Wang H-H, Wang D-W, Wang J-K (2009) A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall. PLoS One 4(5):e5470. https://doi.org/10.1371/journal.pone.0005470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Read DS, Whiteley AS (2015) Chemical fixation methods for Raman spectroscopy-based analysis of bacteria. J Microbiol Methods 109:79–83

    CAS  PubMed  Google Scholar 

  16. Adebayo-Tayo B, Ishola R, Oyewunmi T (2018) Characterization, antioxidant and immunomodulatory potential on exopolysaccharide produced by wild type and mutant Weissella confusa strains. Biotechnol Rep 19:e00271. https://doi.org/10.1016/j.btre.2018.e00271

    Article  Google Scholar 

  17. De Marco S, Sichetti M, Muradyan D, Piccioni M, Traina G, Pagiotti R, Pietrella D (2018) Probiotic cell-free supernatants exhibited anti-inflammatory and antioxidant activity on human gut epithelial cells and macrophages stimulated with LPS. Evid Based Complement Alternat Med 2018:1–12 1756308. https://doi.org/10.1155/2018/1756308

    Article  Google Scholar 

  18. Galinari É, Almeida-Lima J, Macedo GR, Mantovani HC, Rocha HAO (2018) Antioxidant, antiproliferative, and immunostimulatory effects of cell wall α-d-mannan fractions from Kluyveromyces marxianus. Int J Biol Macromol 109:837–846

    CAS  PubMed  Google Scholar 

  19. Aguilar-Toalá J, Estrada-Montoya M, Liceaga A, Garcia H, González-Aguilar G, Vallejo-Cordoba B, González-Córdova A, Hernández-Mendoza A (2019) An insight on antioxidant properties of the intracellular content of Lactobacillus casei CRL-431. LWT-Food Sci Technol 102:58–63

    Google Scholar 

  20. Chisanga M, Muhamadali H, Kimber R, Goodacre R (2017) Quantitative detection of isotopically enriched E. coli cells by SERS. Faraday Discuss 205:331–343

    CAS  PubMed  Google Scholar 

  21. De Gelder J, De Gussem K, Vandenabeele P, Moens L (2007) Reference database of Raman spectra of biological molecules. J Raman Spectrosc 38(9):1133–1147

    Google Scholar 

  22. Jain R, Calderon D, Kierski PR, Schurr MJ, Czuprynski CJ, Murphy CJ, McAnulty JF, Abbott NL (2014) Raman spectroscopy enables noninvasive biochemical characterization and identification of the stage of healing of a wound. Anal Chem 86(8):3764–3772

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lemma T, Saliniemi A, Hynninen V, Hytönen VP, Toppari JJ (2016) SERS detection of cell surface and intracellular components of microorganisms using nano-aggregated Ag substrate. Vib Spectrosc 83:36–45

    CAS  Google Scholar 

  24. Saggu M, Liu J, Patel A (2015) Identification of subvisible particles in biopharmaceutical formulations using Raman spectroscopy provides insight into polysorbate 20 degradation pathway. Pharm Res 32(9):2877–2888

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kurashov EA, Fedorova EV, Krylova JV, Mitrukova GG (2016) Assessment of the potential biological activity of low molecular weight metabolites of freshwater macrophytes with QSAR. Scientifica 2016:1205680:1–9. https://doi.org/10.1155/2016/1205680

    Article  CAS  Google Scholar 

  26. Lagunin A, Filimonov D, Poroikov V (2010) Multi-targeted natural products evaluation based on biological activity prediction with PASS. Curr Pharm Des 16(15):1703–1717

    CAS  PubMed  Google Scholar 

  27. Lagunin AA, Dubovskaja VI, Rudik AV, Pogodin PV, Druzhilovskiy DS, Gloriozova TA, Filimonov DA, Sastry NG, Poroikov VV (2018) CLC-Pred: a freely available web-service for in silico prediction of human cell line cytotoxicity for drug-like compounds. PLoS One 13(1):e0191838. https://doi.org/10.1371/journal.pone.0191838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Uddin MJ, Reza AA, Abdullah-Al-Mamun M, Kabir MS, Nasrin MS, Akhter S, Arman MSI, Rahman MA (2018) Antinociceptive and anxiolytic and sedative effects of methanol extract of anisomeles indica: an experimental assessment in mice and computer aided models. Front Pharmacol 9(246). https://doi.org/10.3389/fphar.2018.00246

  29. Malaypally SP, Liceaga AM, Kim K-H, Ferruzzi M, San Martin F, Goforth RR (2015) Influence of molecular weight on intracellular antioxidant activity of invasive silver carp (Hypophthalmichthys molitrix) protein hydrolysates. J Funct Foods 18:1158–1166

    CAS  Google Scholar 

  30. Wan H, Liu D, Yu X, Sun H, Li Y (2015) A Caco-2 cell-based quantitative antioxidant activity assay for antioxidants. Food Chem 175:601–608

    CAS  PubMed  Google Scholar 

  31. Wolfe KL, Liu RH (2007) Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem 55(22):8896–8907

    CAS  PubMed  Google Scholar 

  32. Hall F, Johnson PE, Liceaga A (2018) Effect of enzymatic hydrolysis on bioactive properties and allergenicity of cricket (Gryllodes sigillatus) protein. Food Chem 262:39–47

    CAS  PubMed  Google Scholar 

  33. Martínez-Alvarez O, Batista I, Ramos C, Montero P (2016) Enhancement of ACE and prolyl oligopeptidase inhibitory potency of protein hydrolysates from sardine and tuna by-products by simulated gastrointestinal digestion. Food Funct 7(4):2066–2073

    PubMed  Google Scholar 

  34. Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D, Wang Y, Li W (2017) Antioxidant properties of probiotic bacteria. Nutrients 9(5):521. https://doi.org/10.3390/nu9050521

    Article  CAS  PubMed Central  Google Scholar 

  35. Ketnawa S, Liceaga AM (2017) Effect of microwave treatments on antioxidant activity and antigenicity of fish frame protein hydrolysates. Food Bioprocess Technol 10(3):582–591

    CAS  Google Scholar 

  36. Kusić D, Kampe B, Ramoji A, Neugebauer U, Rösch P, Popp J (2015) Raman spectroscopic differentiation of planktonic bacteria and biofilms. Anal Bioanal Chem 407(22):6803–6813

    PubMed  Google Scholar 

  37. van Manen H-J, Lenferink A, Otto C (2008) Noninvasive imaging of protein metabolic labeling in single human cells using stable isotopes and Raman microscopy. Anal Chem 80(24):9576–9582

    PubMed  Google Scholar 

  38. Núñez IN, Galdeano CM, de LeBlanc AdM, Perdigón G (2015) Lactobacillus casei CRL 431 administration decreases inflammatory cytokines in a diet-induced obese mouse model. Nutrition 31 (7–8):1000–1007

  39. Kepert I, Fonseca J, Müller C, Milger K, Hochwind K, Kostric M, Fedoseeva M, Ohnmacht C, Dehmel S, Nathan P (2017) D-Tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease. J Allergy Clin Immunol 139(5):1525–1535

    CAS  PubMed  Google Scholar 

  40. Yan F, Liu L, Dempsey PJ, Tsai Y-H, Raines EW, Wilson CL, Cao H, Cao Z, Liu L, Polk DB (2013) A Lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor. J Biol Chem 288(42):30742–30751

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Alvarez C-S, Badia J, Bosch M, Giménez R, Baldomà L (2016) Outer membrane vesicles and soluble factors released by probiotic Escherichia coli Nissle 1917 and commensal ECOR63 enhance barrier function by regulating expression of tight junction proteins in intestinal epithelial cells. Front Microbiol 7:1981. https://doi.org/10.3389/fmicb.2016.0198

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kellett ME, Greenspan P, Pegg RB (2018) Modification of the cellular antioxidant activity (CAA) assay to study phenolic antioxidants in a Caco-2 cell line. Food Chem 244:359–363

    CAS  PubMed  Google Scholar 

  43. Aubrey BJ, Strasser A, Kelly GL (2016) Tumor-suppressor functions of the TP53 pathway. Cold Spring Harb Perspect Med 6(5):a026062. https://doi.org/10.1101/cshperspect.a026062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Joerger AC, Fersht AR (2016) The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem 85:375–404

    CAS  PubMed  Google Scholar 

  45. Origassa CST, Câmara NOS (2013) Cytoprotective role of heme oxygenase-1 and heme degradation derived end products in liver injury. World J Hepatol 5(10):541–549

    PubMed  PubMed Central  Google Scholar 

  46. Soares MP, Usheva A, Brouard S, Berberat PO, Gunther L, Tobiasch E, Bach FH (2002) Modulation of endothelial cell apoptosis by heme oxygenase-1-derived carbon monoxide. Antioxid Redox Signal 4(2):321–329

    CAS  PubMed  Google Scholar 

  47. Kobatake E, Nakagawa H, Seki T, Miyazaki T (2017) Protective effects and functional mechanisms of Lactobacillus gasseri SBT2055 against oxidative stress. PLoS One 12(5):e0177106. https://doi.org/10.1371/journal.pone.0177106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. López-Alarcón C, Denicola A (2013) Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays. Anal Chim Acta 763:1–10

    PubMed  Google Scholar 

  49. Xing J, Wang G, Zhang Q, Liu X, Gu Z, Zhang H, Chen YQ, Chen W (2015) Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods. PLoS One 10(3):e0119058. https://doi.org/10.1371/journal.pone.0119058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tang W, Li C, He Z, Pan F, Pan S, Wang Y (2018) Probiotic properties and cellular antioxidant activity of Lactobacillus plantarum MA2 isolated from Tibetan kefir grains. Probiotics Antimicrob Proteins 10(3):523–533

    CAS  PubMed  Google Scholar 

  51. Li S, Zhao Y, Zhang L, Zhang X, Huang L, Li D, Niu C, Yang Z, Wang Q (2012) Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem 135(3):1914–1919

    CAS  PubMed  Google Scholar 

  52. Yi Z-J, Fu Y-R, Li M, Gao K-S, Zhang X-G (2009) Effect of LTA isolated from bifidobacteria on D-galactose-induced aging. Exp Gerontol 44(12):760–765

    CAS  PubMed  Google Scholar 

  53. Tappia PS, Xu Y-J, Rodriguez-Leyva D, Aroutiounova N, Dhalla NS (2013) Cardioprotective effects of cysteine alone or in combination with taurine in diabetes. Physiol Res 62(2):171–178

    CAS  PubMed  Google Scholar 

  54. Lee SY, Hur SJ (2017) Antihypertensive peptides from animal products, marine organisms, and plants. Food Chem 228:506–517

    CAS  PubMed  Google Scholar 

  55. Furushiro M, Sawada H, Hirai K, Motoike M, Sansawa H, Kobayashi S, Watanuki M, Yokokura T (1990) Blood pressure-lowering effect of extract from Lactobacillus casei in spontaneously hypertensive rats (SHR). Agric Biol Chem 54(9):2193–2198

    CAS  Google Scholar 

  56. Sawada H, Furushiro M, Hirai K, Motoike M, Watanabe T, Yokokura T (1990) Purification and characterization of an antihypertensive compound from Lactohacillus casei. Agric Biol Chem 54(12):3211–3219

    CAS  PubMed  Google Scholar 

  57. Lin M-Y, Yen C-L (1999) Antioxidative ability of lactic acid bacteria. J Agric Food Chem 47(4):1460–1466

    CAS  PubMed  Google Scholar 

  58. Lee J, Hwang KT, Chung MY, Cho DH, Park CS (2005) Resistance of Lactobacillus casei KCTC 3260 to reactive oxygen species (ROS): role for a metal ion chelating effect. J Food Sci 70(8):388–391

    Google Scholar 

  59. Li W, Ji J, Rui X, Yu J, Tang W, Chen X, Jiang M, Dong M (2014) Production of exopolysaccharides by Lactobacillus helveticus MB2-1 and its functional characteristics in vitro. LWT-Food Sci Technol 59(2):732–739

    CAS  Google Scholar 

  60. Ijiri M, Fujiya M, Konishi H, Tanaka H, Ueno N, Kashima S, Moriichi K, Sasajima J, Ikuta K, Okumura T (2017) Ferrichrome identified from Lactobacillus casei ATCC334 induces apoptosis through its iron-binding site in gastric cancer cells. Tumor Biol 39(6):1010428317711311. https://doi.org/10.1177/1010428317711311

    Article  CAS  Google Scholar 

  61. Liu Y, Zhou H, Hu Z, Yu G, Yang D, Zhao J (2017) Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review. Biosens Bioelectron 94:131–140

    CAS  PubMed  Google Scholar 

Download references

Funding

Aguilar-Toalá was supported by a graduate scholarship from the National Council for Science and Technology (CONACyT) of Mexico. The present work was also funded by Hatch Act formula funds in the College of Agriculture, Purdue University.

Author information

Authors and Affiliations

Authors

Contributions

A. Hernández-Mendoza and A. M. Liceaga have contributed equally to the direction of this work.

Corresponding authors

Correspondence to A. Hernández-Mendoza or A. M. Liceaga.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Toalá, J.E., Hall, F.G., Urbizo-Reyes, U.C. et al. In Silico Prediction and In Vitro Assessment of Multifunctional Properties of Postbiotics Obtained From Two Probiotic Bacteria. Probiotics & Antimicro. Prot. 12, 608–622 (2020). https://doi.org/10.1007/s12602-019-09568-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-019-09568-z

Keywords

Navigation