Skip to main content
Log in

Temperature-dependent development of Agrotis ipsilon (Lepidoptera: Noctuidae) and its stage transition models

  • Research
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The black cut worm Agrotis ipsilon (Hufnagel) is a destructive crop pest worldwide and a typical cut worm damaging plant parts below the soil surface, which requires a thorough phenological prediction of the target stage for proper management. Temperature is an essential factor affecting the phenology and dynamics of insect populations. So, this study was conducted to evaluate the temperature-dependent development of A. ipsilon fed on Kimchi cabbage (Brassica campestris) in a wide range of temperatures (10 to 40 ℃) in the laboratory. The linear and nonlinear relationship between temperature and development rate (1/development time) was analyzed. The lower threshold temperatures (LT) for eggs, larvae, and pupae were estimated to be 12.1 °C, 9.6 °C, and 11.2 °C, respectively, with thermal constants (degree days for development completion) of 31.3, 342.2, and 181.3 DD at each stage, respectively. Additionally, the thermal constant for tracking the phenology of each stage was determined using a common LT of 10.4 ℃: 40.3 DD for eggs, 315.6 DD for larvae, and 199.6 DD for pupae. Consequently, we provided newly the stage transition models for all stages of A. ipsilon using two basic components of the nonlinear development rate and distribution models to simulate the proportion of individuals shifted from one stage to the next stage. These models in their current form will be useful for constructing a population model for A. ipsilon in the future. Furthermore, the variation in the development time of A. ipsilon reported in previous studies was discussed using 95% confidence limits of the estimated line of our nonlinear models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Article  Google Scholar 

  • Amin, A. A. H., & Abdin, M. I. (1997). Host preference and lifetable parameters of black cutworm, Agrotis ipsilon (Hufn) (Lepidoptera: Noctuidae). 1997 Proceedings Beltwide Cotton Conferences. New Orleans, LA, USA, 2, 1190–1192.

    Google Scholar 

  • Andrewartha, H. G., & Birch, L. C. (1954). The distribution and abundance of animals. University of Chicago Press.

    Google Scholar 

  • Archer, T. L., Musick, G. R., & Murray, R. L. (1980). Influence of temperature and moisture on black cutworm (Lepidoptera: Noctuidae) development and reproduction. Canadian Entomologist, 112, 665–673. https://doi.org/10.4039/Ent112665-7

    Article  Google Scholar 

  • Beck, S. D. (1986). Effects of Photoperiod and thermoperiod on growth of Agrotis ipsilon (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 79, 821–828. https://doi.org/10.1093/aesa/79.5.821

    Article  Google Scholar 

  • Blair, B. W. (1976). Comparison of the development of Agrotis ipsiion Hufnagel and A. segetum (Denis & Schiff.) (Lepidoptera: Noctuidae) at constant temperatures. Journal of Entomological Society of Southern Africa, 39, 271–277.

    Google Scholar 

  • Bursell, E. (1964). Environmental aspects: temperature. In M. Rockstein (Ed.), The physiology of insecta, vol 1 (pp. 283–321). New York and London: Academic Press.

    Google Scholar 

  • Busching, M. K., & Turpin, F. T. (1977). Survival and development of black cutworm (Agrotis ipsilon) larvae on various species of crop plants and weeds. Environmental Entomology, 6, 63–65. https://doi.org/10.1093/ee/6.1.63

    Article  Google Scholar 

  • CABI. (2021, November 16). Invasive species compendium, Agrotis ipsilon (black cutworm). Retrieved January 9, 2022, from https://www.cabi.org/isc/datasheet/3801

  • Campbell, A., Frazer, B. D., Gilbert, N., Gutierrez, A. P., & Markauer, M. (1974). Temperature requirements of some aphids and their parasites. Journal of Applied Ecology, 11, 31–438. https://doi.org/10.2307/2402197

    Article  Google Scholar 

  • Capinera, J. L. (2018, December). Black cutworm, Agrotis ipsilon (Hufnagel). University of Florida, Publication Number: EENY-395. Retrieved March 10, 2021, from http://entnemdept.ufl.edu/creatures/veg/black_cutworm.htm

  • Chaudhary, J. P., & Malik, V. S. (1980). Effect of constant temperature and humidity on the development of different stages of Agrotis ipsilon Hufnagel. Bulletin of Entomology, 21, 83–89.

    Google Scholar 

  • Chiba, T., & Hasegawa, T. (1972). Cold hardinnes of Agrotis ipsilon Hufnagel and Agrotis fucosa Butler. Annual Report of the Society of Plant Protection of North Japan, 23, 66–70.

    Google Scholar 

  • Choi, K. S., & Kim, D.-S. (2014). Temperature-dependent development of Ascotis selenaria (Lepidoptera: Geometridae) and its stage emergence models with field validation. Crop Protection, 66, 72–79. https://doi.org/10.1016/j.cropro.2014.08.020

    Article  Google Scholar 

  • Cockfield, S. D., Butkewich, S. L., Samoil, K. S., & Mahr, D. L. (1994). Forecasting fright activity of Sparganothis sulfureana (Lepidoptera: Tortricidae) in cranberries. Journal of Economic Entomology, 87, 193–196. https://doi.org/10.1093/jee/87.1.193

    Article  Google Scholar 

  • Curry, G. L., Feldman, R. M., & Sharpe, P. J. H. (1978a). Foundations of stochastic development. Journal of Theoretical Biology, 74, 397–410. https://doi.org/10.1016/0022-5193(78)90222-9

    Article  CAS  PubMed  Google Scholar 

  • Curry, G. L., Feldman, R. M., & Smith, K. C. (1978b). A stochastic model of a temperature-dependent population. Journal of Theoretical Biology, 13, 197–213. https://doi.org/10.2307/2531289

    Article  CAS  Google Scholar 

  • Curry, G. L., & Feldman, R. M. (1987). Mathematical foundations of population dynamics. Texas A&M University Press.

    Google Scholar 

  • Dahi, H. F., Ibrahem, W. G., & Ali, M. M. (2009). Heat requirements for the development of the black cutworm, Agrotis ipsilon (Hüfnagel) (Noctuidae: Lepidoptera). Egyptian Academic Journal of Biological Sciences, 2, 117–124. https://doi.org/10.21608/EAJBSA.2009.15502

  • Damos, P. T., & Savopoulou-Soultani, M. (2008). Temperature dependent bionomics and modeling of Anarsia lineatella (Lepidoptera: Gelechiidae) in the laboratory. Journal of Economic Entomology, 101, 1557–1567. https://doi.org/10.1093/jee/101.5.1557

    Article  CAS  PubMed  Google Scholar 

  • Druzhelyubova, T. S. (1976). The effect of temperature and the light factor on the development and behaviour of geographical populations of the Y-moth Agrotis ypsilon Rott. (Lepidoptera, Noctuidae). Entomologicheskoe Obozrenie, 55, 277–285. (in Russian).

    Google Scholar 

  • El-Kifl, A. H., Nasr, E. A., & Moawad, M. (1972). Effect of host plants on various stages of Agrotis ipsilon (Hufnagel). Bulletin De La Société Entomologique D’égypte, 56, 103–111.

    Google Scholar 

  • Esperk, T., Tammaru, T., & Nylin, S. (2007). Intraspecific variability in number of larval instars in insects. Journal of Economic Entomology, 100, 627–645. https://doi.org/10.1603/0022-0493(2007)100[627:ivinol]2.0.co;2

    Article  PubMed  Google Scholar 

  • Fahmy, H. S., Zaazou, M. H., Kamel, A. A. M., & El-Hemasey, A. H. (1973). Effect of temperature and humidity on the immature stages of the greasy cutworm, Agrotis ipsilon (Hufnagel). Bulletin De La Société Entomologique D’égypte, 57, 153–164.

    Google Scholar 

  • Gholson, L. E., & Showers, W. B. (1979). Feeding behaviour of black cutworms on seedling com and organic baits in the green house. Environmental Entomology, 8, 552–557. https://doi.org/10.1093/ee/8.3.552

    Article  Google Scholar 

  • Hasagawa, T., & Chiba, T. (1969). Relations of temperature to the development of the egg and larval stage of Agrotis ipsilon and Agrotis fucosa. Japanese Journal of Applied Entomology and Zoology, 13, 124–128. https://doi.org/10.1303/jjaez.13.124

    Article  Google Scholar 

  • Hyun, S. Y., Elekçioğlub, N. Z., Kim, S. B., Kwon, S. H., & Kim, D.-S. (2017). Parameter estimation for temperature-driven immature development and oviposition models of Phyllocnistis citrella Stainton (Lepidoptera: Gracillaridae) in the laboratory. Journal of Asia-Pacific Entomology, 20, 802–808. https://doi.org/10.1016/j.aspen.2017.05.006

    Article  Google Scholar 

  • Ikemoto, T., & Takai, K. (2000). A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environmental Entomology, 29, 671–682. https://doi.org/10.1603/0046-225X-29.4.671

    Article  Google Scholar 

  • Jandel Scientific. (2002). Table curve 2D. Automated curve fitting and equation discovery, version 4.0. Dandel Scientific, San Rafel, CA.

  • Kaster, L. V. (1983). The influence of diet and fluctuating temperatures on black cutworm, Agrotis ipsilon (Hufnagel), development. Dissertation, Iowa State University

  • Kaster, L. V., & Showers, W. B. (1982). Evidence of spring immigration and autumn reproductive diapause of the adult black cutworm in Iowa. Environmental Entomology, 11, 306–312. https://doi.org/10.1093/ee/11.2.306

    Article  Google Scholar 

  • Kim, D.-S., Ahn, J. J., & Lee, J.-H. (2017). A review for non-linear models describing temperature-dependent development of insect populations: Characteristics and developmental process of models. Korean Journal of Applied Entomology, 56, 1–18. https://doi.org/10.5656/KSAE.2016.11.0.061

    Article  Google Scholar 

  • Kim, D.-S., Lee, J.-H., & Yiem, M.-S. (2001). Temperature-dependent development of Carposina sasakii (Lepidoptera: Carposinidae) and its stage emergence models. Environmental Entomology, 30, 298–305. https://doi.org/10.1603/0046-225X-30.2.298

    Article  Google Scholar 

  • Kim, H. S., & Kim, S. H. (1981). Survey on the dominant species of cutworms in several localities. Korean Journal of Plant Protection, 20, 181–182.

    Google Scholar 

  • Kim, S. B., & Kim, D.-S. (2018). A tentative evaluation for population establishment of Bactrocera dorsalis (Diptera: Tephritidae) by its population modeling: Considering the temporal distribution of host plants in a selected area in Jeju, Korea. Journal of Asia-Pacific Entomology, 21, 451–465. https://doi.org/10.1016/j.aspen.2018.01.022

    Article  Google Scholar 

  • Kim, T.-H. (1991). Host preference by the black cutworm and varietal resistance in soybeans. Research Report of RDA (Agri. Institutional Cooperation), 34, 119–124.

  • Lactin, D. J., Holliday, N. J., Johnson, D. L., & Craigen, R. (1995). Improved rate model of temperature-dependent development by arthropods. Environmental Entomology, 24, 68–75. https://doi.org/10.1093/ee/24.1.68

    Article  Google Scholar 

  • Lin, S., Hudson, A. C., & Richards, A. G. (1954). An analysis of threshold temperatures for the development of Oncopeltus and Tribolium eggs. Physiological Zoology, 27, 287–310.

    Article  Google Scholar 

  • Logan, J. A., Wollkind, D. J., Hoyt, S. C., & Tanigoshi, L. K. (1976). An analytic model for description of temperature dependent rate phenomena in arthropods. Environmental Entomology, 5, 1133–1140. https://doi.org/10.1093/ee/5.6.1133

    Article  Google Scholar 

  • Luckmann, W. H., Shaw, J. T., Sherrod, D. W., & Ruesink, W. G. (1976). Developmental rate of the black Cutworm. Journal of Economic Entomology, 69, 386–388. https://doi.org/10.1093/jee/69.3.386

    Article  Google Scholar 

  • Messenger, P. S. (1970). Bioclimatic inputs to biological control and pest management programs. In R. L. Rabb & F. E. Guthrie (Eds.), Concepts of pest management (pp. 84–99). North Carolina State University Press.

    Google Scholar 

  • Mushtaq, A., Khan, Z. H., Pathania, S. S., Mir, S. H., Rasool, K., Maqbool, S., & Kant, R. H. (2021). Larval biology of black cutworm Agrotis ipsilon on maize in Kashmir. International Journal of Current Microbiology and Applied Science, 10, 3382–3388. https://doi.org/10.20546/ijcmas.2021.1002.372

  • Muştu, M., Akturk, M., Akkoyun, G., & Cakir, S. (2021). Life tables of Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae) on different cultivated plants. Phytoparasitica, 49, 1–11. https://doi.org/10.1007/s12600-020-00868-7

    Article  Google Scholar 

  • Nikolov, N. K. (1977). Influence of different feed plants on the development of some noctuid species of the genus Agrotis. Rasteniev Dni Nauki, 14, 124–132.

    Google Scholar 

  • Olufade, A. O. (1972). The thermal requirements for the development of egg, larval, and pupal stages of black cutworms, Agrotis ipsilon (Hufn.), at constant temperatures. Bulletin of Entomological Society of Nigeria, 3, 141–146.

    Google Scholar 

  • Purdue University. (2009). Crop-specific IPM guides: Black cutworm, Agrotis ipsilon Hufnagel. Retrieved May 14, 2021, from https://extension.entm.purdue.edu/fieldcropsipm/insects/black-cutworms.php.

  • Rivnay, E. (1964). A contribution to the biology and phenology of Agrotis ipsilon Rott. in Israel. Zeitschrift Für Angewandte Entomologie, 53, 295–309. https://doi.org/10.1111/j.1439-0418.1963.tb02897.x

    Article  Google Scholar 

  • Rodingpuia, C., & Lalthanzara, H. (2021). An insight into black cutworm (Agrotis ipsilon): A glimpse on globally important crop pest. Science Vision, 21, 36–42. https://doi.org/10.33493/scivis.21.02.02

  • Santos, L., & Shields, E. J. (1998). Temperature and diet effect on black cutworm (Lepidoptera: Noctuidae) larval development. Journal of Economic Entomology, 91, 267–273. https://doi.org/10.1093/jee/91.1.267

    Article  Google Scholar 

  • SAS Institute. (2019). SAS system for window, release 9.4. SAS Institute, Cary, NC.

  • Schwartz, G. (1978). Estimating dimensions of a model. Annals of Statistics, 6, 461–464. https://www.jstor.org/stable/2958889

  • Sclove, L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52, 333–343.  http://hdl.handle.net/10.1007/BF02294360

  • Showers, W. B. (1997). Migratory ecology of the black cutworm. Annual Review of Entomology, 42, 393–425. https://doi.org/10.1146/annurev.ento.42.1.393

    Article  CAS  PubMed  Google Scholar 

  • Showers, W. B., Kaster, L. V., & Mulder, P. G. (1983). Com seedling growth stage and black cutworm (Lepidoptera: Noctuidae) damage. Environmental Entomology, 12, 241–244. https://doi.org/10.1093/ee/12.1.241

    Article  Google Scholar 

  • Story, R. N., Keaster, A. J., Showers, W. B., & Shaw, J. T. (1984). Survey and phenology of cutworms (Lepidoptera: Noctuidae) infesting field corn in the Midwest. Journal of Economic Entomology, 77, 491–494. https://doi.org/10.1093/jee/77.2.491

    Article  Google Scholar 

  • Taylor, F. (1981). Ecology and evolution of physiological time in insects. American Naturalist, 117, 1–23. https://www.jstor.org/stable/2460694

  • UC/ANR (University of California Agriculture and Natural Resources). (2014, July 10). UC IPM phenology model database: Black cutworm. Retrieved March 11, 2021, from http://ipm.ucanr.edu/PHENOLOGY/ma-black_cutworm.html

  • Wagner, T. L., Wu, H., Sharpe, P. J. H., Schoolfield, R. M., & Coulson, R. N. (1984a). Modeling insect developmentrates: A literature review and application of a biophysical model. Annals of the Entomological Society of America, 77, 208–225. https://doi.org/10.1093/aesa/77.2.208

    Article  Google Scholar 

  • Wagner, T. L., Wu, H., Feldman, R. M., Sharpe, P. J. H., & Coulson, R. N. (1985). Multiple-cohort approach for simulation development of insect population under variable temperatures. Annals of the Entomological Society of America, 78, 691–704. https://doi.org/10.1093/aesa/78.6.691

    Article  Google Scholar 

  • Wagner, T. L., Wu, H., Sharpe, P. J. H., & Coulson, R. N. (1984b). Modeling distributions of insect development time: A literature review and application of the Weibull function. Annals of the Entomological Society of America, 77, 475–487. https://doi.org/10.1093/aesa/77.5.475

    Article  Google Scholar 

  • Weibull, W. A. (1951). Statistical distribution function of wide applicability. Journal of Applied Mechanics, 18, 293–196. https://doi.org/10.1115/1.4010337

    Article  Google Scholar 

  • Yan, W., & Hunt, L. A. (1999). An equation for modelling the temperature response of plants using only the cardinal temperatures. Annals of Botany, 84, 607–614. https://doi.org/10.1006/ANBO.1999.0955

    Article  Google Scholar 

  • Zaazou, M. H., Fahmy, H. S. M., Kamel, A. A. M., & El-Hemasey, A. H. (1973). Effect of food on the development of the greasy cutworm, Agrotis ipsilon (Hufn.). Bulletin De La Société Entomologique D’égypte, 57, 379–386.

    Google Scholar 

  • Zeng, J., Liu, Y., Zhang, H., Liu, J., Jiang, Y., Wyckhuys, K., & Wu, K. (2020). Global warming modifies long-distance migration of an agricultural insect pest. Journal of Pest Science, 93, 569–581. https://doi.org/10.1007/s10340-019-01187-5

    Article  Google Scholar 

Download references

Acknowledgements

This study was conducted at Gyeonggi-do Agricultural Research & Extension Services. Additionally, we are grateful to the Sustainable Agriculture Research Institute (SARI) in Jeju National University for providing experimental facilities. We greatly appreciate two anonymous Reviewers and Editor for the valuable comments on the manuscript.

Funding

This work was carried out with the support of the "Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ016245)" Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The research was originally designed by Young Su Lee and Gil-Hah Kim. Material preparation and experiments were performed by Hee-A Lee and Young Su Lee. The data analysis was conducted by Soo-Bin Kim and Dong-Soon Kim. The first draft of the manuscript was written by Dong-Soon Kim, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dong-Soon Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The research meets ethical guidelines and adheres to the legal requirements of the study country. This research does not involve human subjects.

Consent for publication

Not applicable.

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 69 KB)

Supplementary file2 (XLSX 249 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.S., Lee, HA., Kim, GH. et al. Temperature-dependent development of Agrotis ipsilon (Lepidoptera: Noctuidae) and its stage transition models. Phytoparasitica 51, 199–214 (2023). https://doi.org/10.1007/s12600-023-01049-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-023-01049-y

Keywords

Navigation