Skip to main content
Log in

Demographic study of imidacloprid-resistant Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) fed on transgenic and commercial potato cultivars

  • Original Article
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Impacts of transgenic and non-transgenic potato (Solanum tuberosum L.) plants containing more than one insecticidal gene on life table parameters of an imidacloprid-resistant Colorado potato beetle (CPB) colony, Leptinotarsa decemlineata, were studied under laboratory conditions. The life table parameters of the CPB colony on both commercial potato cultivars Agria and Lady Olympia and their transgenic counterparts were studied utilizing two methods: individually reared and group-reared to understand full potential of this destructive pest. All tested CPB larvae and adults on transgenic potato plants died before obtaining any results for the two-sex life table studies. The life table parameters were calculated using non-transgenic plants. The intrinsic rate of increase (r), the finite rate of increase (λ), the net reproductive rate (R0) and the mean generation time (T) were calculated 0.15 day−1, 1.16 day−1, 233.81 eggs/female and 37.43 days on Lady Olympia respectively. The CPBs, reared on cultivar Agria, had significantly lower values of r, λ and R0 except T (0.12 day−1, 1.13 day−1, 120.81 eggs/female and 39.75 days) respectively. The net reproductive rate (R0) (204.31 eggs/female) and the mean generation time (T) 43.86 days of CPB were longer on Lady Olympia than on Agria when reared in groups. All these results indicate that the non-transgenic potato cultivar, Lady Olympia is a more susceptible host for CPB than the potato cultivar Agria and the transgenic potato cultivars exhibit significant toxicity and could be useful in control of imidacloprid-resistant CPB population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akköprü, E. P., Atlıhan, R., Okut, H., & Chi, H. (2015). Demographic assessment of plant cultivar resistance to insect pests: A case study of the dusky-veined walnut aphid (Hemiptera: Callaphididae) on five walnut cultivars. Journal of Economic Entomology, 108(2), 378–387. https://doi.org/10.1093/jee/tov011.

    Article  PubMed  Google Scholar 

  • Alyokhin, A. (2009). Colorado potato beetle management on potatoes: Current challenges and future prospects. Fruit, Vegetable and Cereal Science and Biotechnology, 3, 10–19.

    Google Scholar 

  • Alyokhin, A. V., & Ferro, D. N. (1999a). Modifications in dispersal and oviposition of Bt-resistant and Bt-susceptible Colorado potato beetles as a result of exposure to Bacillus thuringiensis subsp. tenebrionis Cry3A toxin. Entomologia Experimentalis et Applicata, 90(1), 93–101.

    Article  Google Scholar 

  • Alyokhin, A. V., & Ferro, D. N. (1999b). Relative fitness of Colorado potato beetle (Coleoptera: Chrysomelidae) resistant and susceptible to the Bacillus thuringiensis Cry3A toxin. Journal of Economic Entomology, 92(3), 510–515.

    Article  CAS  Google Scholar 

  • Argentine, J. A., Zhu, K. Y., Lee, S. H., & Clark, J. M. (1994). Biochemical mechanisms of azinphosmethyl resistance in isogenic strains of Colorado potato beetle. Pesticide Biochemistry and Physiology, 48(1), 63–78.

    Article  CAS  Google Scholar 

  • Asghar Fathi, S. A., Fakhr-Taha, Z., Razmjou, J., & Palumbo, J. (2013). Life-history parameters of the Colorado potato beetle, Leptinotarsa decemlineata, on seven commercial cultivars of potato, Solanum tuberosum. Journal of Insect Science, 13, 132–139. https://doi.org/10.1673/031.013.13201.

    Article  Google Scholar 

  • Baker, M., Hossain, K., Zabierek, K., Collie, K., Alyokhin, A., Mota-Sanchez, D., & Whalon, M. (2014). Geographic variation in cannibalism in Colorado potato beetle (Coleoptera: Chrysomelidae) populations. Environmental Entomology, 43(1), 102–109.

    Article  Google Scholar 

  • Bakhsh, A., Anayol, E., & Ozcan, S. F. (2014). Comparison of transformation efficiency of five Agrobacterium tumefaciens strains in Nicotiana tabacum L. Emirates Journal of Food and Agriculture, 26, 259–264. https://doi.org/10.9755/ejfa.v26i3.16437.

    Article  Google Scholar 

  • Carey, J.R. (1993). Applied demography for biologists, with special emphasis on insects (211). U.K.: Oxford.

  • Carey, J. R. (2001). Insect biodemography. Annual Review of Entomology, 46, 79–110. https://doi.org/10.1146/annurev.ento.46.1.79.

    Article  PubMed  CAS  Google Scholar 

  • Chang, C., Huang, C. Y., Dai, S. M., Atlihan, R., & Chi, H. (2016). Genetically engineered ricin suppresses Bactrocera dorsalis (Diptera: Tephritidae) based on demographic analysis of group-reared life table. Journal of Economic Entomology, 109(3), 987–992. https://doi.org/10.1093/jee/tow091.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J., Alyokhin, A., Mota-Sanchez, D., Baker, M., & Whalon, M. (2014). Variation in fitness among geographically isolated Colorado potato beetle (Coleoptera: Chrysomelidae) populations. Annals of the Entomological Society of America, 107(1), 128–135.

    Article  Google Scholar 

  • Chi, H. (1988). Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17, 26–34.

    Article  Google Scholar 

  • Chi, H. (1990). Timing of control based on the stage structure of pest populations: A simulation approach. Journal of Economic Entomology, 83, 1143–1150. https://doi.org/10.1093/jee%2F83.4.1143.

    Article  Google Scholar 

  • Chi, H. (2017). Timing-MSChart: A computer program for the population projection based on age-stage, two-sex life table. National Chung Hsing University, Taichung, Taiwan. Available: http://140.120.197.173/Ecology/.

  • Chi, H. (2018). TWOSEX-MSChart: A computer program for the age-stage, two-sex life table analysis. http://140.120.197.173/Ecology/download/Two-sexMSChart.zip.

  • Chi, H., & Liu, H. (1985). Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica, 24, 225–240.

    Google Scholar 

  • Chi, H., & Su, H. Y. (2006). Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology, 35, 10–21. https://doi.org/10.1603/0046-225X-35.1.10.

    Article  Google Scholar 

  • Christou, P., Capell, T., Kohli, A., Gatehouse, J. A., & Gatehouse, A. M. (2006). Recent developments and future prospects in insect pest control in transgenic crops. Trends in Plant Science, 11, 302–308. https://doi.org/10.1016/j.tplants.2006.04.001.

    Article  PubMed  CAS  Google Scholar 

  • Efron, B., & Tibshirani, R.J. (1993). Syntax of referencing in An introduction to the bootstrap (Chapman and Hall).

  • Ferro, D. N., Logan, J. A., Voss, R. H., & Elkinton, J. S. (1985). Colorado potato beetle (Coleoptera, Chrysomelidae) temperature-dependent growth and feeding rates. Environmental Entomology, 14, 343–348.

    Article  Google Scholar 

  • Fisher, R. (1930). The genetical theory of natural selection: A complete variorum edition, in, ed. by Bennett JH. Oxford University Press, Oxford, pp. 27–30.

  • Gauthier, N. L., Hofmaster, R. N., & Semel, M. (1981). History of Colorado potato beetle control. Advances in Potato Pest Management, 23, 13–33.

    Google Scholar 

  • Gelman, D. B., Bell, R. A., Liska, L. J., & Hu, J. S. (2001). Artificial diets for rearing the Colorado potato beetle, Leptinotarsa decemlineata. Journal of insect science, 1(1), 7.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gökçe, A., Isaacs, R., & Whalon, M. E. (2006). Behavioural response of Colorado potato beetle (Leptinotarsa decemlineata) larvae to selected plant extracts. Pest Management Science, 62, 1052–1057. https://doi.org/10.1002/ps.1271.

    Article  PubMed  CAS  Google Scholar 

  • Gökçe, A., Isaacs, R., & Whalon, M. E. (2012). Dose–response relationships for the antifeedant effects of Humulus lupulus extracts against larvae and adults of the Colorado potato beetle. Pest Management Science, 68, 476–481. https://doi.org/10.1002/ps.2299.

    Article  PubMed  CAS  Google Scholar 

  • Goodbrod, J. R., & Goff, M. L. (1990). Effects of larval population density on rates of development and interactions between two species of Chrysomya (Diptera: Calliphoridae) in laboratory culture. Journal of Medical Entomology, 27, 338–343. https://doi.org/10.1093/jmedent/27.3.338.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, D. (1982). Optimal life histories, optimal notation, and the value of reproductive value. The American Naturalist, 119, 803–823 https://www.jstor.org/stable/2460964.

    Article  Google Scholar 

  • Hantas, C. (1995). Investigations on the preference of potato varieties of the larvae and adults of Colorado potato beetle (Leptinotarsa decemlineata Say) and their development in Erzincan conditions”, Master thesis, Atatürk University, Erzurum, Turkey (in Turkish with English summary).

  • Hare, J. D. (1990). Ecology and management of the Colorado potato beetle. Annual Review of Entomology, 35, 81–100. https://doi.org/10.1146/annurev.en.35.010190.000501.

    Article  Google Scholar 

  • Has, A. (1992). Investigations on the bio-ecology, and especially host-plant relationships of the Colorado potato beetle (Leptinotarsa decemlineata (say) (Coleoptera:Chrysomelidae) in the conditions of Central Anatolia. Ankara Plant Protection Research Institute, Ankara. 194 pp (in Turkish with English summary).

  • Huang, Y. B., & Chi, H. (2011). The age-stage, two-sex life table with an offspring sex ratio dependent on female age. The Journal of Agriculture, Forestry, 60, 337–345.

    Google Scholar 

  • Kaplanoglu, E. (2016). Multi-gene resistance to neonicotinoids in the Colorado potato beetle, Leptinotarsa decemlineata. Electronic Thesis and Dissertation Repository., 3953 http://ir.lib.uwo.ca/etd/3953.

  • Kivan, M. (2004). Some observations on Perillus biowlatus (F.) (Heteroptera: Pentatomidae) a new record for the entomofauna of Turkey (Tükiye böcek faunasi icin yeni bir kayit, Perillus bloculatus (F.) (Heteroptera: Pentatomidae) üzerinde bazı gözlemler). Turkish J. Entomol. 28(2).

  • Kos, M., van Loon, J. J., Dicke, M., & Vet, L. E. (2009). Transgenic plants as vital components of integrated pest management. Trends in Biotechnology, 27, 621–627. https://doi.org/10.1016/j.tibtech.2009.08.002.

    Article  PubMed  CAS  Google Scholar 

  • Kowalski, S. P., Domek, J. M., Deahl, K. L., & Sanford, L. L. (1999). Performance of Colorado potato beetle larvae, Leptinotarsa decemlineata (Say), reared on synthetic diets supplemented with Solanum glycoalkaloids. The American Journal of Potato Research, 76(5), 305–312.

    Article  CAS  Google Scholar 

  • Kuriwada, T., Kumano, N., Shiromoto, K., & Haraguchi, D. (2009). High population density and egg cannibalism reduces the efficiency of mass-rearing in Euscepes postfasciatus (Coleoptera: Curculionidae). Florida Entomologist, 92, 221–229. https://doi.org/10.1653/024.092.0205.

    Article  Google Scholar 

  • Lashomb, J. H., & Ng, Y. S. (1984). Colonization by the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) in rotated and non- rotated potato fields. Environmental Entomology, 13, 1352–1356. https://doi.org/10.1093/ee/13.5.1352.

    Article  Google Scholar 

  • Lewis, E. G. (1942). On the generation and growth of a population. Sankhya, 6, 93–96.

    Google Scholar 

  • Li, W., Yang, Y., Xie, W., Wu, Q., Xu, B., Wang, S., Zhu, X., Wang, S., & Zhang, Y. (2015). Effects of temperature on the age-stage, two-sex life table of Bradysia odoriphaga (Diptera: Sciaridae). Journal of Economic Entomology, 108, 126–134. https://doi.org/10.1093/jee/tou011.

    Article  PubMed  Google Scholar 

  • Lyytinen, A., Lindstrom, L., Mappes, J., Julkunen-Tiitto, R., Fasulati, S. R., et al. (2007). Variability in host plant chemistry: Behavioral responses and life-history parameters of the Colorado potato beetle (Leptinotarsa decemlineata). Chemecol., 17, 51–56. https://doi.org/10.1007/s00049-006-0361-9.

    Article  CAS  Google Scholar 

  • Morris, R. F., & Miller, C. A. (1954). The development of life tables for the spruce budworm. Canadian Journal of Zoology, 32, 283–301. https://doi.org/10.1139/z54-027.

    Article  Google Scholar 

  • Mota-Sanchez, D., Hollingworth, R. M., Grafius, E. J., & Moyer, D. D. (2006). Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say)(Coleoptera: Chrysomelidae). Pest Management Science: formerly Pesticide Science, 62(1), 30–37.

    Article  CAS  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  • Rivnay, E. (1928). External morphology of the Colorado potato beetle (Leptinotarsa decemlineata Say). Journal of the New York Entomological Society, 36(2), 125–145.

    Google Scholar 

  • Roush, R. T., & Tingey, W. M. (1994). Strategies for the management of insect resistance to synthetic and microbial insecticides. Advances in Potato Pest Biology and Management, 237–254.

  • Salim, M., Bakhsh, A., & Gökçe, A. (2021). Stacked insecticidal genes in potatoes exhibit enhanced toxicity against Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Plant Biotechnology Reports, 15, 197–215. https://doi.org/10.1007/s11816-021-00668-3.

    Article  Google Scholar 

  • Saljoqi, A. U. R., Salim, M., Khalil, S. K., & Khurshid, I. (2015). Field application of Trichogramma chilonis (Ishii) for the management of sugarcane borers. Pakistan Journal of Zoology, 47(3), 783–791.

    Google Scholar 

  • Sohail, M. N., Karimi, S. M., Asad, S., Mansoor, S., Zafar, Y., & Mukhtar, Z. (2012). Development of broad-spectrum insect-resistant tobacco by expression of synthetic cry1Ac and cry2Ab genes. Biotechnology Letters, 34, 1553–1560. https://doi.org/10.1007/s10529-012-0923-6.

    Article  PubMed  CAS  Google Scholar 

  • Southwood, T. R. E., & Henderson, P. A. (2000). Ecological methods. Third edition (p. 575). Blackwell Science.

  • Tingey, W. M. (1984). Glycoalkaloids as pest resistance factors. American Potato Journal, 61(3), 157–167.

    Article  CAS  Google Scholar 

  • Tuan, S. J., Lee, C. C., & Chi, H. (2014). Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci., 70, 805–813. https://doi.org/10.1002/ps.3618.

    Article  CAS  Google Scholar 

  • Väänänen, T. (2007). Glycoalkaloid content and starch structure in Solanum species and interspecific somatic potato hybrids. University of Helsinki Department of Applied Chemistry and Microbiology Food Chemistry Division.

  • Wharton, D. R. A., Lola, J. E., & Wharton, M. L. (1968). Growth factors and population density in the American cockroach, Periplaneta Americana. Journal of Insect Physiology, 14, 637–653. https://doi.org/10.1016/0022-1910(68)90224-2.

    Article  Google Scholar 

  • Yas, B., & Güngör, M. A. (2005). Determination of life table and biology of Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), feeding on five different potato varieties in Turkey. Applied Entomology and Zoology, 40, 589–596. https://doi.org/10.1303/aez.2005.589.

    Article  Google Scholar 

  • Ying, W. D., Yan, W. T., Qiu, G. S., Zhang, H. J., & Ma, C. S. (2012). Age-stage two-sex life tables of the experimental population of Panonychus ulmi (Acari: Tetranychidae) on apples Malus sieversii subsp. kirghisorum and M. domestica Golden delicious. Acta Entomologica Sinica, 55, 1230–1238. https://doi.org/10.1603/ec12491.

    Article  Google Scholar 

  • Zhou, Z., Pang, J., Guo, W., Zhong, N., Tian, Y., Xia, et al. (2012). Evaluation of the resistance of transgenic potato plants expressing various levels of Cry3A against the Colorado potato beetle (Leptinotarsa decemlineata say) in the laboratory and field. Pest Management Science, 68, 1595–1604. https://doi.org/10.1002/ps.3356.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Scientific and Technological Research Council of Turkey (TUBITAK) 2215 Graduate Scholarship Program for International Students (BIDEB) for fellowship and, Niğde Ömer Halisdemir University Scientific Research Projects Coordination (FEB 2017/18-BAGEP) research funding and Niğde Ömer Halisdemir University Agricultural Sciences and Technologies Faculty for providing facilities and equipment for completion of this project. The authors would also like to thank Michael D. Bryan (Plant Industry Program Specialist Pesticide and Plant Pest Management Division) State of Michigan, Department of Agriculture and Rural Development for his diligent proofreading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Salim.

Ethics declarations

Conflict of interest

The Authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salim, M., Gökçe, A. & Bakhsh, A. Demographic study of imidacloprid-resistant Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) fed on transgenic and commercial potato cultivars. Phytoparasitica 50, 201–221 (2022). https://doi.org/10.1007/s12600-021-00937-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-021-00937-5

Keywords

Navigation