Skip to main content
Log in

Peptidase inhibitor from Mucuna pruriens seeds inhibits the growth and development of Zeugodacus cucurbitae larvae

  • Original Article
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Zeugodacus cucurbitae (Coquillett) is an economically significant destructive pest of many vegetable and fruit crops. Peptidase inhibitors are a class of plant proteins that cause protein degradation and decrease the supply of amino acids, hampering insect pest growth and survival. To investigate the role of peptidase inhibitors in the control of this pest, the midgut peptidase activities and the growth and development of Z. cucurbitae larvae was studied when they were exposed to partially purified peptidase inhibitor from Mucuna pruriens (L.) DC. The results obtained showed a decline in larval survival, pupal weight and nutritional indices. The results also revealed that after 24, 48 and 72 h of treatment, peptidase inhibitor partially purified from M. pruriens seeds inhibited the complete proteolytic activity of larvae. It exerted effect on midgut peptidases at a stage where Z. cucurbitae larvae feed voraciously thereby prolonging the larval cycle and reducing pupal weight. These results provide quantitative information on the ability of peptidase inhibitors to control Z. cucurbitae and other destructive pest, avoiding chemical pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alewu, B., Nosiri, C. (2011) Pesticides and human health. In: Stoytcheva M, editor. Pesticides in the Modern World – Effects of Pesticides Exposure. InTech, 231–50. Available from: http://www.intechopen.com/ books/pesticides-in-the-modern-world-effects-of-pesticides-exposure/ pesticide-and-human-health.

  • Arulpandi, I., & Sangeetha, R. (2012). Antibacterial activity of fistulin: a protease inhibitor purified from the leaves of Cassia fistula. ISRN pharmaceutics, 2012.

  • Babu, S. R., Subrahmanyam, B., & Santha, I. M. (2012). In vivo and in vitro effect of Acacia nilotica seed proteinase inhibitors on Helicoverpa armigera (Hübner) larvae. Journal of Biosciences, 37(2), 269–276.

    Article  CAS  PubMed  Google Scholar 

  • Bacha, A. B., Jemel, I., Moubayed, N. M., & Abdelmalek, I. B. (2017). Purification and characterization of a newly serine protease inhibitor from Rhamnus frangula with potential for use as therapeutic drug. 3 Biotech, 7(2), 148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Chougule, N. P., Hivrale, V. K., Chhabda, P. J., Giri, A. P., & Kachole, M. S. (2003). Differential inhibition of Helicoverpa armigera gut proteinases by proteinase inhibitors of pigeonpea (Cajanus cajan) and its wild relatives. Phytochemistry, 64(3), 681–687.

    Article  CAS  PubMed  Google Scholar 

  • Chougule, N. P., Giri, A. P., Sainani, M. N. & Gupta, V. S. (2005). Gene expression patterns of Helicoverpa armigera gut proteases. Insect Biochemistry and Molecular Biology, 35(4), 355–367.

  • Chourasiya, S., Khillare, P. S., & Jyethi, D. S. (2015). Health risk assessment of organochlorine pesticide exposure through dietary intake of vegetables grown in the periurban sites of Delhi, India. Environmental Science and Pollution Research, 22(8), 5793–5806.

    Article  CAS  PubMed  Google Scholar 

  • Christeller, J. T., Laing, W. A., Shaw, B. D., & Burgess, E. P. J. (1990). Characterization and partial purification of the digestive proteases of the black field cricket, Teleogryllus commodus (Walker): Elastase is a major component. Insect Biochemistry, 20(2), 157–164.

    Article  CAS  Google Scholar 

  • Christeller, J. T., Laing, W. A., Markwick, N. P., & Burgess, E. P. J. (1992). Midgut protease activities in 12 phytophagous lepidopteran larvae: Dietary and protease inhibitor interactions. Insect Biochemistry and Molecular Biology, 22(7), 735–746.

    Article  CAS  Google Scholar 

  • Costa, H. P. S., Oliveira, J. T. A., Sousa, D. O., Morais, J. K. S., Moreno, F. B., Monteiro-Moreira, A. C. O., et al. (2014). JcTI-I: A novel trypsin inhibitor from Jatropha curcas seed cake with potential for bacterial infection treatment. Frontiers in Microbiology, 5, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • da Silva Bezerra, C., de Oliveira, C. F. R., Machado, O. L. T., de Mello, G. S. V., da Rocha Pitta, M. G., de Melo Rêgo, M. J. B., et al. (2016). Exploiting the biological roles of the trypsin inhibitor from Inga vera seeds: A multifunctional Kunitz inhibitor. Process Biochemistry, 51(6), 792–803.

    Article  CAS  Google Scholar 

  • Dabhade, A. R., Mokashe, N. U., & Patil, U. K. (2016). Purification, characterization, and antimicrobial activity of nontoxic trypsin inhibitor from Albizia Amara Boiv. Process Biochemistry, 51(5), 659–674.

    Article  CAS  Google Scholar 

  • Dantzger, M., Vasconcelos, I. M., Scorsato, V., Aparicio, R., Marangoni, S., & Macedo, M. L. R. (2015). Bowman–Birk proteinase inhibitor from Clitoria fairchildiana seeds: Isolation, biochemical properties and insecticidal potential. Phytochemistry, 118, 224–235.

    Article  CAS  PubMed  Google Scholar 

  • Dunaevskiĭ, I., Elpidina, E. N., Vinokurov, K. S., & Belozerskiĭ, M. A. (2005). Protease inhibitors: Use to increase plant tolerance to insects and pathogens. Molekuliarnaia Biologiia, 39(4), 702–708.

    PubMed  Google Scholar 

  • El-latif, A. O. (2015). Protease purification and characterization of a serine protease inhibitor from Egyptian varieties of soybean seeds and its efficacy against Spodoptera littoralis. Journal of Plant Protection Research.

  • Finney, D. J. (1971). Probit analysis. New York: Cambridge University Press.

    Google Scholar 

  • Gomes, C.E., Barbosa, A.E., Macedo, L.L., Pitanga, J.C., Moura, F.T., Oliveira, A.S., Moura, R.M., Queiroz, A.F., Macedo, F.P., Andrade, L.B., Vidal, M.S. Effect of trypsin inhibitor Gomes, C. E., Barbosa, A. E., Macedo, L. L., Pitanga, J. C., Moura, F. T., Oliveira, A. S., ... & Vidal, M. S. (2005). Effect of trypsin inhibitor from Crotalaria pallida seeds on Callosobruchus maculatus (cowpea weevil) and Ceratitis capitata (fruit fly). Plant Physiology and Biochemistry, 43(12), 1095–1102.

  • Gurumoorthi, P., Pugalenthi, M., & Janardhanan, K. (2003). Nutritional potential of five accessions of a south indian tribal pulse Mucuna pruriens var utilis: Ii. Investigations on total free phenolics, tannins, trypsin and chymotrypsin inhibitors, phytohaemagglutinins, and in vitro protein digestibility. Tropical and Subtropical Agroecosystems, 1(2–3), 153–158.

    Google Scholar 

  • Kaur, A. P., & Sohal, S. K. (2013). Biopotency of partially purified protease inhibitor from peas on the larval growth, development and enzyme system of Bactrocera cucurbitae (Diptera: Tephritidae). International Journal of Tropical Insect Science, 33(1), 82–90.

    Article  Google Scholar 

  • Kuwar, S. S., Pauchet, Y., & Heckel, D. G. (2020). Effects of class-specific, synthetic, and natural proteinase inhibitors on life-history traits of the cotton bollworm Helicoverpa armigera. Archives of Insect Biochemistry and Physiology, 103(4), e21647.

    Article  CAS  PubMed  Google Scholar 

  • Lampariello, L. R., Cortelazzo, A., Guerranti, R., Sticozzi, C., & Valacchi, G. (2012). The magic velvet bean of Mucuna pruriens. Journal of Traditional and Complementary Medicine, 2(4), 331–339.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lazarević, J. M., & Perić-Mataruga, V. D. (2003). Nutritive stress effects on growth and digestive physiology of Lymantria dispar larvae. Jugoslovenska medicinska biohemija, 22(1), 53–59.

    Article  Google Scholar 

  • Macedo, M. L. R., Freire, M. D. G. M., da Silva, M. B. R., & Coelho, L. C. B. B. (2007). Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus and Callosobruchus maculatus (Coleoptera: Bruchidae). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 146(4), 486–498.

    Article  CAS  Google Scholar 

  • Martins, T. F., Vasconcelos, I. M., Silva, R. G., Silva, F. D., Souza, P. F., Varela, A. L., ... & Oliveira, J. T. (2018). A Bowman–Birk inhibitor from the seeds of Luetzelburgia auriculata inhibits Staphylococcus aureus growth by promoting severe cell membrane damage. Journal of Natural Products, 81(7), 1497–1507.

  • Medel, V., Palma, R., Mercado, D., Rebolledo, R., Quiroz, A., & Mutis, A. (2015). The effect of protease inhibitors on digestive proteolytic activity in the raspberry weevil, Aegorhinus superciliosus (Guerin)(coleoptera: Curculionidae). Neotropical Entomology, 44(1), 77–83.

    Article  CAS  PubMed  Google Scholar 

  • Mendonça, E. G., de Almeida Barros, R., Cordeiro, G., da Silva, C. R., Campos, W. G., de Oliveira, J. A., & de Almeida Oliveira, M. G. (2020). Larval development and proteolytic activity of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) exposed to different soybean protease inhibitors. Archives of Insect Biochemistry and Physiology, 103(1), e21637.

    Article  PubMed  CAS  Google Scholar 

  • Pilon, A. M., Campos, W. G., Silva, C. R., Cordeiro, G., Silva, C. R., & Oliveira, M. G. A. (2018). Protease inhibitory, insecticidal and deterrent effects of the trypsin-inhibitor benzamidine on the velvetbean caterpillar in soybean. Anais da Academia Brasileira de Ciências, 90(4), 3475–3482.

    Article  CAS  PubMed  Google Scholar 

  • Pimentel, D., & Burgess, M. (2014). Environmental and economic costs of the application of pesticides primarily in the United States. In Integrated pest management (pp. 47–71). Springer, Dordrecht.

  • Pompermayer, P., Lopes, A. R., Terra, W. R., Parra, J. R. P., Falco, M. C., & Silva-Filho, M. D. C. (2001). Effects of soybean proteinase inhibitor on development, survival and reproductive potential of the sugarcane borer, Diatraea saccharalis. Entomologia Experimentalis et Applicata, 99(1), 79–85.

    Article  CAS  Google Scholar 

  • Qin, Y., Paini, D. R., Wang, C., Fang, Y., & Li, Z. (2015). Global establishment risk of economically important fruit fly species (Tephritidae). PLoS One, 10(1).

  • Reiler, E., Jørs, E., Bælum, J., Huici, O., Caero, M. M. A., & Cedergreen, N. (2015). The influence of tomato processing on residues of organochlorine and organophosphate insecticides and their associated dietary risk. Science of the Total Environment, 527, 262–269.

    Article  CAS  Google Scholar 

  • Samiksha, Singh, D., Kesavan, A. K., & Sohal, S. K. (2019a). Exploration of anti-insect potential of trypsin inhibitor purified from seeds of Sapindus mukorossi against Bactrocera cucurbitae. Scientific Reports, 9(1), 1–14.

    Article  CAS  Google Scholar 

  • Samiksha, Singh, D., Kesavan, A. K., & Sohal, S. K. (2019b). Purification of a trypsin inhibitor from Psoralea corylifolia seeds and its influence on developmental physiology of Bactrocera cucurbitae. International Journal of Biological Macromolecules, 139, 1141–1150.

    Article  CAS  PubMed  Google Scholar 

  • Sarwar, M. U. H. A. M. M. A. D. (2006). Occurrence of insect pests on guava (Psidium guajava) tree. Pakistan Journal of Zoology, 38(3), 197.

    Google Scholar 

  • SPSS Inc. Released (2007). SPSS for windows, version 16.0. Chicago, SPSS Inc.

  • Srinivasan, A., Giri, A. P., & Gupta, V. S. (2006). Structural and functional diversities in lepidopteran serine proteases. Cellular & Molecular Biology Letters, 11(1), 132–154.

    Article  CAS  Google Scholar 

  • Stevens, J. A., Dunse, K. M., Guarino, R. F., Barbeta, B. L., Evans, S. C., West, J. A., & Anderson, M. A. (2013). The impact of ingested potato type II inhibitors on the production of the major serine proteases in the gut of Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 43(2), 197–208.

    Article  CAS  PubMed  Google Scholar 

  • Tamhane, V. A., Giri, A. P., Sainani, M. N., & Gupta, V. S. (2007). Diverse forms of pin-II family proteinase inhibitors from Capsicum annuum adversely affect the growth and development of Helicoverpa armigera. Gene, 403(1–2), 29–38.

    Article  CAS  PubMed  Google Scholar 

  • Tammaru, T., Kaitaniemi, P., & Ruohomäki, K. (1996). Realized fecundity in Epirrita autumnata (Lepidoptera: Geometridae): relation to body size and consequences to population dynamics. Oikos, 407–416.

  • Telang, M., Srinivasan, A., Patankar, A., Harsulkar, A., Joshi, V., Damle, A., ... & Birah, A. (2003). Bitter gourd proteinase inhibitors: Potential growth inhibitors of Helicoverpa armigera and Spodoptera litura. Phytochemistry, 63(6), 643–652.

  • Udamale, S. K., Moharil, M. P., Ugale, T. B., & Mankar, J. M. (2013). Differential inhibition of Helicoverpa armigera (Hubner) gut proteinases by proteinase inhibitors of okra and It's wild relatives. ISRN biotechnology, 2013, 110.

    Article  CAS  Google Scholar 

  • Vasudev, A., & Sohal, S. K. (2015). Evaluation of partially purified subabul protease inhibitors as bio insecticidal tool with potential for the control of Spodoptera litura. International Journal of Current Research and Review, 7(18), 31.

    CAS  Google Scholar 

  • Vasudev, A., & SOHAL, S. (2016). Partially purified Glycine max proteinase inhibitors: Potential bioactive compounds against tobacco cutworm, Spodoptera litura (Fabricius, 1775)(Lepidoptera: Noctuidae). Turkish Journal of Zoology, 40(3), 379–387.

    Article  CAS  Google Scholar 

  • Velmani, S., Shanthi, M., Chinniah, C., & Vellaikumar, S. (2019). Antimetabolic effect on Spodoptera litura due to acute feeding of Adenanthera pavonina proteinase inhibitor. IJCS, 7(4), 980–986.

    CAS  Google Scholar 

  • Volpicella, M., Leoni, C., Costanza, A., De Leo, F., Gallerani, R., & Ceci, L. (2011). Cystatins, serpins and other families of protease inhibitors in plants. Current Protein and Peptide Science, 12(5), 386–398.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C. I., Yang, Q., & Craik, C. S. (1995). Isolation of a high affinity inhibitor of urokinase-type plasminogen activator by phage display of ecotin. Journal of Biological Chemistry, 270(20), 12250–12256.

    Article  CAS  Google Scholar 

  • White, I. M., & Elson-Harris, M. M. (1992). Fruit flies of economic significance: Their identification and bionomics. CAB international.

    Book  Google Scholar 

  • Wu, G. Z., Zhu, K. Y., & Zeng, R. S. (2013). Effects of soybean trypsin inhibitor on growth and development phase of Spodoptera litura (F.). Journal of Ecology and Environmental Sciences, 22, 1335–1340.

    Google Scholar 

  • Zhao, A., Li, Y., Leng, C., Wang, P., & Li, Y. (2019). Inhibitory effect of protease inhibitors on larval midgut protease activities and the performance of Plutella xylostella (Lepidoptera: Plutellidae). Frontiers in Physiology, 9, 1963.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng, S., Chen, B., Qiu, X., Chen, M., Ma, Z., & Yu, X. (2016). Distribution and risk assessment of 82 pesticides in Jiulong River and estuary in South China. Chemosphere, 144, 1177–1192.

    Article  CAS  PubMed  Google Scholar 

  • Zhu-Salzman, K., & Zeng, R. (2015). Insect response to plant defensive protease inhibitors. Annual Review of Entomology, 60, 233–252.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The grant received from UGC, UPE, New Delhi for conducting the research work is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: Samiksha and SKS. Performed the experiments: Samiksha, DS. Analysed the data: Samiksha, SKS, DS and AKK. Wrote the manuscript: Samiksha and DS.

Corresponding author

Correspondence to Satwinder Kaur Sohal.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samiksha, Singh, D., Kesavan, A.K. et al. Peptidase inhibitor from Mucuna pruriens seeds inhibits the growth and development of Zeugodacus cucurbitae larvae. Phytoparasitica 49, 645–657 (2021). https://doi.org/10.1007/s12600-021-00901-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-021-00901-3

Keywords

Navigation