Skip to main content

Advertisement

Log in

Evaluation of resistance in 16 eggplant genotypes to the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae)

  • Original Article
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

With more than 200 host plant species, the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is one of the most common and destructive pests of agricultural crops including vegetables, fruits, field crops and ornamentals in both open-field and greenhouse cultivations in Turkey. Control of this pest generally depends on the use of synthetic pesticides. The use of resistant plant varieties in conjunction with other control tactics generates more effective and sustainable results in management of many pests. In the present study, a total of 16 eggplant genotypes, including eight wild sources and eight standard commercial cultivars, were evaluated for the first time using free-choice and bridge test methods for their resistance against this mite under controlled conditions. Resistance was evaluated by counting mites settled on plants of each genotype. Resistance data were calculated by taking mean number (no.) of mites that prefer the plants of susceptible or resistant genotypes at each time interval (1, 3, 5, 7 or 9 days after releasing mites in free-choice tests; 30 min, 1, 2 or 3 h in bridge tests). The results from free-choice tests showed that wild genotype, Solanum sisymbriifolium (from INRA, France) was the most resistant genotype to T. urticae with no settlement of mites per plant both at 7 and 9 days after releasing mites, and followed by two commercial S. melongena genotypes (Topan 374 and Kemer) that had 2.25 and 2.50, 4.25 and 3.50 mites per plant, respectively, on the 7th and 9th days of mite introduction. S. sisymbriifolium was also found to be the most resistant genotype in bridge tests with a mean no. of 13.0 mites per plant. These results can be used for breeding and management purposes for control of two-spotted spider mite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

IPM:

Integrated Pest Management

BATEM:

Bati-Akdeniz Agricultural Research Institute

INRA:

The French National Institute for Agricultural Research

RH:

Relative humidity

L:D:

Light: Dark

DMRT:

Duncan’s Multiple Range Test

NPK:

Nitrogen, Phosphorus and Potassium

References

  • Agrawal, A. A. (2000). Host-range evolution: Adaptation and trade-offs in fitness of mites on alternative hosts. Ecology, 81, 500–508.

    Article  Google Scholar 

  • Alba, J. M., Montserrat, M., & Muñoz, F. (2009). Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line populations. Experimental & Applied Acarology, 47, 35–47.

    Article  Google Scholar 

  • Alizade, M., Hosseini, M., Awal, M. M., Goldani, M., & Hosseini, A. (2016). Effects of nitrogen fertilization on population growth of two-spotted spider mite. Systematic and Applied Acarology, 21(7), 947–956.

    Article  Google Scholar 

  • Bulut, E., & Gocmen, H. (2000). Pests and their natural enemies on greenhouse vegetables in Antalya. Integrated Control in Protected Crops, Mediterranean Climate, IOBC/wprs Bull., 23, 33–37.

    Google Scholar 

  • Chen, Y., Opit, G. P., Jonas, V. M., Williams, K. A., Nechols, J. R., & Margolies, D. C. (2007). Two-spotted spider mite population level, distribution, and damage on ivy geranium in response to different nitrogen and phosphorus fertilization regimes. Journal of Economic Entomology, 100(6), 1821–1830.

    Article  CAS  Google Scholar 

  • El-Kady, G. A., El Sharabasy, H. M., Mahmoud, M. F., & Bahgat, I. M. (2007). Toxicity of two potential bio-insecticides against moveable stages of Tetranychus urticae Koch. Journal of Applied Sciences Research., 3, 1315–1319.

    Google Scholar 

  • El-Sadan, M. F. I. (2018). Influence of host plants and some leaf contents on biological aspects of Tetranychus urticae Koch (Arachnida: Acari: Tetranychidae). The Journal of Basic and Applied Zoology (JoBAZ), 79, 20.

    Article  Google Scholar 

  • Erler, F., Ates, A. O., & Bahar, Y. (2013). Evaluation of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, for the control of carmine spider mite, Tetranychus cinnabarinus (Boisduval) under greenhouse conditions. Egypt J Biol Pest Control, 23(2), 233–240.

    Google Scholar 

  • FAO STAT (2020) Agricultural Data. http://faostat.fao.org (accessed 27 July 2020).

  • Figueiredo, A. S. T., Resende, J. T. V., Morales, R. G. F., Gonçalves, A. P. S., & Da Silva, P. R. (2013). The role of glandular and non-glandular trichomes in the negative interactions between strawberry cultivars and spider mite. Arthropod-Plant Interactions, 7, 53–58.

    Article  Google Scholar 

  • GKGM (2016) Eggplant Disease and Pest Management. https://www.tarimorman.gov.tr/GKGM (accessed 15 February 2020).

  • Glass, J. J., Schimmel, B. C., Alba, J. M., Escobar-Bravo, R., Schuurink, R. C., & Kant, M. R. (2012). Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. International Journal of Molecular Sciences, 13, 17077–17103.

    Article  Google Scholar 

  • Gong, Y. J., Chen, J. C., Zhu, L., Cao, L. J., Jin, G. H., Hoffmann, A. A., Zhong, C. F., Wang, P., Lin, G., & Wei, S. J. (2018). Preference and performance of the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae) on strawberry cultivars. Experimental and Applied Acarology, 76, 185–196.

    Article  Google Scholar 

  • Hasanuzzaman, A. T. M., Islam, M. N., Zhang, Y., Zhang, C. Y., & Liu, T. X. (2016). Leaf morphological characters can be a factor for intra-varietal preference of whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) among eggplant varieties. PLoS One, 11(4), e0153880.

    Article  Google Scholar 

  • Jackson, M. L. (2005). Soil chemical analysis: Advanced course. Madison, WI: UW-Madison Libraries Parallel Press.

    Google Scholar 

  • Lester RN, Hasan SMZ (1991) Origin and domestication of the brinjal eggplant, Solanum melongena, from S. incanum, in Africa and Asia. In: J.G., Hawkes, R.N., Lester, M., Nee & N., Estrada-R (Eds). Solanaceae III, pp. 369–387. Royal Botanic Gardens, Kew, Richmond (U.K.).

  • Maluf, W. R., Inoue, I. F., Ferreira, R. P. D., Gomes, L. A. A., Castro, E. M., et al. (2007). Higher glandular trichome density in tomato leaflets and repellence to spider mites. Pesqui. Agropecu. Bras., 42, 1227–1235.

    Article  Google Scholar 

  • Mitchell, C., Brennan, R. M., Graham, J., & Karley, A. J. (2016). Plant defense against herbivorous pests: Exploiting resistance and tolerance traits for sustainable crop protection. Frontiers in Plant Science, 7, 1132.

    Article  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. Circular, Vol. 939 (p. 19). Washington, DC: US Department of Agriculture.

  • Onyambus, G. K., Maranga, R. O., Gitonga, L. M., & Knapp, M. (2011). Host plant resistance among tomato accessions to the spider mite Tetranychus evansi in Kenya. Experimental & Applied Acarology, 54, 385–393.

    Article  CAS  Google Scholar 

  • Pietrosiuk, A., Furmanowa, M., Kropczyńska, D., Kawka, B., & Wiedenfeld, H. (2003). Life history parameters of the two-spotted spider mite (Tetranychus urticae Koch) feeding on bean leaves treated with pyrrolizidine alkaloids. Journal of Applied Toxicology, 23(3), 187–190.

    Article  CAS  Google Scholar 

  • Rakha, M., Bouba, N., Ramasamy, S., Regnard, J., & Hanson, P. (2017). Evaluation of wild tomato accessions (Solanum spp.) for resistance to two-spotted spider mite (Tetranychus urticae Koch) based on trichome type and acylsugar content. Genet. Resources Crop Evol., 64, 1011–1022.

    Article  CAS  Google Scholar 

  • Russo, V. M. (1996). Cultural methods and mineral content of eggplant (Solanum melongena) fruit. Journal of the Science Food and Agriculture, 71(1), 119–123.

    Article  CAS  Google Scholar 

  • Sadilova, E., Stintzing, F. C., & Carle, R. (2006). Anthocyanins, colour and antioxidant properties of eggplant (Solanum melongena L.) and violet pepper (Capsicum annuum L.) peel extracts. Zeitschrift für Naturforschung, 61(7–8), 527–535.

    Article  CAS  Google Scholar 

  • Saeidi, Z., Mallik, B., & Kulkarni, R. S. (2007). Inheritance of glandular trichomes and twospotted spider mite resistance in cross Lycopersicon esculentum ‘Nandi’ and L. pennellii ‘LA2963. Euphytica, 154, 231–238.

    Article  CAS  Google Scholar 

  • Sharma, H. C., & Ortiz, R. (2002). Host plant resistance to insects: An eco-friendly approach for pest management and environment conservation. Journal of Environmental Biology, 23(2), 111–135.

    CAS  PubMed  Google Scholar 

  • Sharma, H. C., Vidyasagar, P., & Nwanze, K. F. (1993). Effect of host-plant resistance on economic injury levels for the sorghum midge. Contarinia sorghicola. Int. Pest Manag., 39, 435–444.

    Article  Google Scholar 

  • Sihachakr, D., Daunay, M. C., Serraf, I., Chaput, M. H., Mussio, I., Haricourt, R., Rotino, L., & Ducreux, G. (1994). Somatic hybridization of eggplant (Solanum melongena L.) with its close and wild relatives. In Y. P. S. Bajaj (Ed.), Biotechnology in agriculture and forestry: Somatic hybridization in crop improvement (pp. 255–278). Berlin: Springer.

    Chapter  Google Scholar 

  • Skorupska, A. (2004). Resistance of apple cultivars to two-spotted spider mite, Tetranychus urticae Koch (Acarina, Tetranychidae) part II. Influence of leaf pubescence of selected apple cultivars on fecundity of two-spotted spider mite. Journal of Plant Protection Research, 44(1), 69–74.

    Google Scholar 

  • Smith, C. M. (1989). Plant resistance to insects (p. 286). New York: John Wiley and Sons.

    Google Scholar 

  • SPSS (2008) Base 10.0 Application Guide. SPSS, Chicago, IL, USA.

  • Taher, D., Mohamed, A., Rakha, M. A., Ramasamy, S., Solberg, S. Ø., & Schafleitner, R. (2019). Sources of resistance for two-spotted spider mite (Tetranychus urticae) in scarlet (Solanum aethiopicum L.) and gboma (S. macrocarpon L.) eggplant germplasms. HortScience, 54(2), 240–245.

    Article  CAS  Google Scholar 

  • Tian, D., Tooker, J., Peiffer, M., Chung, S. H., & Felton, G. W. (2012). Role of trichomes in defense against herbivores: Comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta, 236, 1053–1066.

    Article  CAS  Google Scholar 

  • Topuz, E., & Erler, F. (2007). Bioefficacy of some essential oils against the carmine spider mite. Tetranychus cinnabarinus. Fresenius Environ Bull, 16, 1498–1502.

    CAS  Google Scholar 

  • Topuz, E., Erler, F., & Gumrukcu, E. (2016). Survey of indigenous entomopathogenic fungi and evaluation of their pathogenicity against the carmine spider mite, Tetranychus cinnabarinus (Boisd.), and the whitefly, Bemisia tabaci (Genn.) biotype B. Pest Management Science, 72(12), 2273–2279.

    Article  CAS  Google Scholar 

  • Topuz, E., Madanlar, N., & Erler, F. (2012). Evaluation of fumigant toxicity of Mentha pulegium essential oil against Tetranychus cinnabarinus under greenhouse conditions. Fresenius Environmental Bulletin, 21, 2739–2745.

    CAS  Google Scholar 

  • van den Boom, C. E. M., van Beek, T. A., & Dicke, M. (2003). Differences among plant species in acceptance by the spider mite Tetranychus urticae Koch. Journal of Applied Entomology, 127(3), 177–183.

    Article  Google Scholar 

  • Wermelinger, B., Oertli, J. J., & Baumgärtner, J. (1991). Environmental factors affecting the life-tables of Tetranychus urticae (Acari: Tetranychidae) III. Host-plant nutrition. Experimental & Applied Acarology, 12, 259–274.

    Article  Google Scholar 

  • White, J. W., & Montes, R. C. (2005). Variation in parameters related to leaf thickness in common bean (Phaseolus vulgaris L.). Field Crops Research, 91, 7–21.

    Article  Google Scholar 

  • Zhang ZQ (2003). Mites of greenhouses: identification, biology and control. p. 244. Cambridge: CABI Publishing.

Download references

Availability of data and materials

All data generated or analyzed in this study are available in this published manuscript.

Funding

This project was financially supported by TAGEM (General Directorate of Agricultural Research and Policies, Ankara, Turkey) (Project No. TAGEM/BBAD/10/A09/P01/12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musa Kirisik.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirisik, M., Erler, F., Boyaci, F. et al. Evaluation of resistance in 16 eggplant genotypes to the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Phytoparasitica 49, 275–285 (2021). https://doi.org/10.1007/s12600-020-00856-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-020-00856-x

Keywords

Navigation